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ABSTRACT
Sticker Voting is a voting method where ballots are cast
by placing stickers on favored candidates. It differs from
many other voting methods because the act of voting reveals
information to other players, which induces an asymmetry
of information available to subsequent voters. Voters may
strategize through both the choice of the submitted ballot
and the timing of its submission. In this paper, we introduce
and analyze a model for strategic voter behavior in Sticker
Voting. We find its equilibrium behavior and discuss how it
reflects human voting behavior.

1. INTRODUCTION
Because voting is a process that takes place over time,

there is an asymmetry of information that is available to
earlier and later voters. The ballots cast by earlier voters
inform subsequent voters. The latter may use this infor-
mation to vote strategically, maximizing their chances of
casting a pivotal ballot; The former may gain a first-mover
advantage, establishing their favorite candidate as a lead
runner by shaping what information is available to later vot-
ers. Strategic voters must decide not only which ballot to
cast, but also when to cast their ballot.

The U.S. presidential primaries is an example of such a
sequential procedure. The primaries determine each par-
ties’ presidential nominee, and are conducted as a series of
elections in each state. Each state-level election determines
how many delegates are sent in support of each nominee by
that state. States schedule their own primary dates. The
resulting elections are spread over several months. In 2016,
primaries began in February and ended in June, in prepa-
ration for the November election [1]. Both parties and indi-
vidual states recognize the importance of strategic timing.
Certain time slots are highly prized by both the Republican
and Democratic Parties. Both parties award bonus dele-
gates to states holding their elections later in the primary
season [4, 14].

Online polls are another domain which allows for strategic
timing. These polls are used as a social choice mechanism for
selecting anything from the cutest animal, to artistic direc-
tion for crowdfunded projects, to the winner of the Webby
People’s Voice award. A popular implementation of online
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polls is the popular group scheduling platform Doodle. Doo-
dle allows participants to approve or decline proposed time
slots. Importantly, Doodle supports open polls, which al-
low voters to view the ballots cast by previous voters before
committing their own, or waiting and revisiting the poll at
a later time.

In this paper, we propose the Sticker Voting framework,
where voters are invited to place a sticker (their ballot) on
their chosen candidate (which becomes common knowledge).
In addition to the potential for casting a strategic ballot, this
process also invites voters to be strategic in timing their
vote. We propose a model for strategic voter behavior that
incorporates strategic timing, and we analyze the strate-
gic equilibrium in a simple Sticker Plurality Voting game.
Finally, we discuss how we may use our model to capture
voting behavior in the real world.

2. RELATED WORK
In the social choice literature, Sequential Voting describes

a voting process (frequently based on plurality) where voters
cast their ballots in a particular order, and preceding ballots
become common knowledge. This is in contrast with Sticker
Voting, where the agent has a choice over the order of votes
and strategic timing is possible.

Callander examines “herding” and “bandwagon” effects in
Sequential Voting as an information aggregation process [5].
Voters are asked to pick from two candidates, one of which
is objectively better than the other. Voters each receive
a private noisy signal, and cast their ballots sequentially,
based on their signal and preceding ballots. Callander shows
that the resulting election begins in an informative phase,
where ballots aggregate private signals of voters, but can
enter a cascade phase where all subsequent voters agree on
the current leading candidate. Alon et al. [2] further extend
this model by giving voters intrinsic utility for having voted
for the winner (in addition to selecting the better candidate).
Battaglini, Morton and Palfrey [3] show that in such a game
with costly votes and the possibility for abstention, early
voters bear a larger cost when they choose to contribute to
the information aggregation process.

Sandholm and Vulkan [15] examine bargaining games in
distributed systems where agents have externally imposed
deadlines. Prior to their deadline, agents may negotiate by
making offers in continuous time. Interestingly, they find
that the sequential equilibrium behavior for the agents is
to wait until the deadline, at which point they will concede
fully. This is due to the informational effect that accom-
panies making an early offer, which signals a weakness in



bargaining position. Moreover, an accepted offer shows that
the offerer has already conceded too much, and would have
been better off by waiting.

Tal, Meir and Gal [16] study online human voting behav-
ior in response to poll information. They conduct experi-
ments on Amazon Mechanical Turk where participants are
given preferences (in the form of small monetary rewards)
for playing in a plurality voting game. The game may be
one-shot, where poll information is fictitious; or it may be
a game of Iterative Voting with other participants. Aside
from a small number of erratic voters (who act randomly),
most voters exercise either the “default” option (a truthful
ballot in the one-shot game, or maintaining the same ballot
in an iterated game), or utilized a myopic beset response.

Desmedt and Elkind [7] explore strategic behavior in Se-
quential Voting where voters may choose to abstain. They
show how the subgame perfect Nash equilibrium may be
computed, and show that when there are more than 3 can-
didates, the equilibrium behavior of voters are complex and
sometimes counterintuitive. The outcome of the election is
sensitive to the risk adversity of the voters, and the voter
order.

Gaspers, Naroditskiy, Narodytska, and Walsh [8] exam-
ine the possible and necessary winner problem in Sequential
Voting (which they term “social polls”) when conducted in
a social network setting. They find that the possible win-
ner problem is NP-hard to compute, but propose an efficient
algorithm for finding necessary winners.

Xia and Conitzer [17] study strategic behavior of agents in
Sequential Voting (which they term “Stackelberg Voting”),
where voter preference and voting order are public knowl-
edge. The resulting voting game can be solved via backward
induction, and may result in highly suboptimal candidates
being selected.

Most relevant to our investigation of Sticker Voting is
by Dekel and Piccione [6], who examine Sequential Voting
where voting occurs in 2 periods, and voters are allowed to
choose the period in which they wish to vote. Their model
differs from ours in that, this choice must be made prior
to the election, and prior to the realization of the voters’
own preferences. Under their model, Dekel and Piccione
find that all voters prefer to vote in the second period, mak-
ing the sequential outcome equivalent to the simultaneous
outcome.

Doodle recently emerged as a popular online poll platform
for group scheduling, allowing groups to perform approval
voting with open (public) or closed (private) ballots in real
time. Zou, Meir and Parkes [18] examine voting behavior
in over 340,000 polls. They find marked difference in voting
behavior between open and closed polls. Moreover, they find
that in open polls, early voters behave differently from later
voters, showing evidence of strategic reasoning based on the
additional information. Obraztsova, Polukarov, Rabinovich
and Elkind [12] propose the Doodle Poll Game capturing this
behavior, where users derive additional utility from appear-
ing to be available. Reinecke et al. [13] have also examined
how Doodle voting behavior may be affected by national
culture and social norms.

3. STICKER VOTING MODEL
We consider a non-sequential voting game G with n voters

and m candidatesM. Let B be the set of admissible ballots
a voter may cast, and Bn be the set of possible ballots cast by

the population of voters. Let F be a social choice function
mapping Bn to the set of winners, a non-empty subset of
M. Each voter v has a private utility function uv : 2M → R
mapping each outcome to a utility value.

We define a Sticker Voting game based on G by specifying
a number of voting rounds T ≥ 1. In each round, voters may
cast a ballot or choose to “Wait”; this choice is made simul-
taneously within each round. Once a voter casts a ballot,
it is committed and irreversible. Formally, in each round,
each voter plays an action from the action set B∪{∅}, where
∅ corresponds to “Wait” action. Once a voter casts a ballot
b ∈ B, their action space for subsequent rounds is reduced to
the set {b}; we refer to this as moving from the controlled
game to the uncontrolled game. Let Ht ∈ Bn denote
the set of actions played by agents in round t. The history
of play prior to current round t, Ht = (H1, H2, . . . Ht−1)
is common knowledge. The winner set is F(HT ), where ∅
actions are interpreted as “Abstain”.

In round t, a voter may act according to a pure strategy
function S, which maps Ht to an action at ∈ B ∪ {∅}. S
maps to the action b if the agent entered the uncontrolled
game by casting ballot b ∈ B in a prior round. We also allow
voters to play mixed strategies, which map Ht to a mixed
strategy, i.e. a distribution over B ∪ {∅}.

We focus on Markovian strategies, where the voters do
not care about the history of ballots prior to the previous
round t− 1. A Markovian strategy S maps t and Ht−1 to a
mixed strategy.

3.1 Plurality Sticker Voting
In this paper, we focus on the Resolute Plurality Voting

Rule. Admissible ballots B are the candidatesM. For round
t, denote the standing st as a vector whose i-th element
corresponds to the number of ballots supporting candidate
i in Ht−1, or the zero vector if t = 1. The social choice
function F maps the final votes HT to the unique candidate
i with the highest siT , breaking ties uniformly at random.

We consider Markovian strategies that are also anony-
mous to other voters. In round t, while in the controlled
game, an agent’s strategy simply maps t and st to a mixed
strategy.

3.2 Solution Concept
The Sticker Voting Game uses the solution concept of the

Perfect Bayesian Equilibrium (PBE). PBE is a refinement of
Subgame Perfect Equilibrium (SPE) for sequential games.
In a SPE, players act according to strategies that form a
Nash equilibrium in every subgame of the original game.
PBE additionally allows players to have incomplete informa-
tion, where certain nodes of the game tree are indistinguish-
able from each other to particular players; these are called
Information Sets. Players maintain beliefs corresponding to
the probability that they are in a particular node in the cur-
rent Information Set; their strategies are defined according
to these beliefs (and may depend on the history of play).
In the Sticker Voting Game, Information Sets correspond to
voters not knowing the types of the other voters.

In the Plurality Sticker Voting Game, the current round
and tally forms a tuple (t, st) that uniquely identifies the
information set for the player in the controlled game. Each
information set consists of nodes representing the possible
types that the remaining uncommitted voters may have.
The voter has a belief over the distribution of types of the



uncommitted voters.
A second set of nodes capture the uncontrolled games,

with a unique node for each round t and uncontrolled tally
st.

4. COMPLETE INFORMATION GAME
We first consider a simplified scenario with n = 3 voters,
{1, 2, 3}, with complete information, and m = 3 candidates,
{A,B,C}, in a T = 2 round game. Player 1 has preference
A � B � C; player 2, B � C � A; player 3, C � A �
B, forming a Condorcet cycle. Each player gains utility u1

if their favorite candidate wins, u2 utility for their second
choice, and 0 for their third choice, with u1 > u2 > 0.
We also require that 2u2 > u1 so that conceding to one’s
second place alternative is better than a three-way tie. The
types of all agents are public knowledge. The following table
summarizes the utilities:

Voter A B C
1 u1 u2 0
2 0 u1 u2

3 u2 0 u1

For simplicity of notation, we denote voter v’s favorite
candidate as bv,1, the second choice as bv,2, and so on. When
the v is clear from context, we omit v from the subscript.
We also use bv,i to denote the action where v votes for i. We
will actualize the utility values as u1 = 3 and u2 = 2.

Analysis: Final Round
Since the types are common knowledge, we use the more gen-
eral solution concept of the Subgame Perfect Equilibrium,
and use backward induction to solve the game. Without lost
of generality, we take the perspective of Agent 1.

We begin with the final round T . If the agent is still
in control, she may find the game in a number of different
states:
Case 1: 2 ballots for the same candidate.

Agent 1’s vote is irrelevant, and that candidate is selected
Case 2: 2 ballots for different candidates.

Agent 1 breaks ties in favor of the better option.
Case 3: 1 ballot for A

Agent 1 also votes A and gets A as the outcome.
Case 4: 1 ballot for B

Note that this ballot must be cast by Agent 2, since Agent
3 would never vote for B. In this scenario, we can break
down the utilities for the remaining players in the follow-
ing table. Entries indicate the winning candidate, with the
payoff for the row and column players in parentheses.

Agent 3
C A

Agent 1
A tie(5/3, 5/3) A(3, 2)
B B(2, 0) B(2, 0)

It is clear both agents will coordinate on action b1,1 =
b3,2 = A as other actions are strictly dominated, and we
may iteratively remove dominated strategies.
Case 5: Only Agent 3 has voted, for C = b1,3

We also break down utilities here:

Agent 2
B C

Agent 1
A tie(5/3, 5/3) C(0, 2)
B B(2, 3) C(0, 2)

By the same argument before, the two agents will coordi-
nate on selecting B.
Case 6: Only Agent 2 has voted, for C = b1,3

Since Agent 3 has not voted, this is actually Case 1 from
the perspective of Agent 3. That is, since C is Agent 3’s top
choice, Agent 3 will also vote C, secure it as the outcome.
Agent 1’s vote is irrelevant.
Case 7: No votes observed

Assuming each agent plays symmetric strategies, each out-
come is equally likely, giving an expected utility of 5/3.

Interestingly, Case 4 and Case 5 clearly show that there
is no straight forward first-mover advantage in this scenario.
Any agent that is the sole voter in the initial round, and
votes for b1, will force the remaining agents to coordinate in
the next round, and produce b3 as the outcome.

Analysis: Initial Round
Using backward induction, we determine the course of play
in the initial round. We assume symmetric play; that is,
each player v plays action bv,i with probability pi, i = ∅, 1, 2,
0 ≤ p∅, p1, p2 ≤ 1 and p∅ + p1 + p2 = 1. We analyze the
expected utility for Agent 1 for each action.
Case 1: Agent 1 plays A

As we have established, if Agent 1 plays A and the other
agents plays ∅, the other agents will coordinate to select
C, yielding 0 utility for Agent 1. However, Agent 1 may
potentially gain an advantage if the other agents choose not
to wait. The following table shows the outcomes and their
payoffs for Agent 1, based on the actions of Agents 2 and 3.

Agent 3
C A ∅

Agent 2
B tie(5/3) A(3) A(3)
C C(0) A(3) C(0)
∅ C(0) A(3) C(0)

The expected utility for voting b1 in the first round is

E(u|b1) =
5

3
p21 + 3p2 + 3p∅p1 (1)

Case 2: Agent 1 plays B

Agent 3
C A ∅

Agent 2
B B(2) B(2) B(2)
C C(0) tie(5/3) C(0)
∅ B(2) B(2) B(2)

The expected utility for voting b2 in the first round is

E(u|b2) = 2p1 + 2p∅ +
5

3
p22 (2)

Case 3: Agent 1 plays ∅



Agent 3
C A ∅

Agent 2
B B(2) A(3) A(3)
C C(0) A(3) C(0)
∅ B(2) A(3) ∗(5/3)

The expected utility for Waiting in the first round is

E(u|b∅) = 3p2 + 2p21 + 5p∅p1 +
5

3
p2∅ (3)

Notice immediately that even when factoring in the possi-
bility of multiple agents voting in the initial round, Waiting
dominates voting A. So we conclude that p1 = 0.

Suppose we are at a symmetric mixed Nash Equilibrium,
then Agent 1 must be ambivalent over the actions in its
support (i.e. b2 and ∅). So we may set equations (2) and (3)
equal, and solve.

Surprisingly, the symmetric mixed Nash Equilibrium strat-
egy for the initial round is for each agent to play b2 with
probability 0.2, and Wait with probability 0.8.

4.1 Rational Voter Behavior
In this simple, complete information game, rational voters

will never vote for their top choice in the first round. Instead,
they will vote b2 with probability 0.2, or otherwise Wait in
the first round. In the latter case, Agent 1 will vote for her
favorite candidate in the second round, unless both other
voters have committed their ballots and she must break a
tie in her favor; or Agent 3 casts the only ballot and has
voted for C, in which case Agent 1 votes for B.

5. INCOMPLETE INFORMATION GAME
Next, we consider an incomplete information scenario based

on the simple game above. As before, we have n = 3 vot-
ers {1, 2, 3} and m = 3 alternatives {A,B,C}. Players
may be one of three types: Type A players have preference
A � B � C; Type B, B � C � A; and Type C, C � A � B.
The possible types form a Condorcet cycle, but there is no
guarantee that such a cycle will exist in a particular real-
ization of types. Nature assigns a type to each player with
equal probability. Players know their own types, but do not
know the types of other players. The game will be played
over T ≥ 2 rounds. We impose the same utility structure as
before.

Analysis: Final Round T

WLOG, we consider the game from the perspective of Agent
1, who is Type A. If we are in the final round of the controlled
game, with tally st, let the voters’ strategy S(t, st) be a
mixed strategy playing bi with probability pt,sti , where i ∈
{1, 2, 3, ∅}. We will omit the t and/or st from the superscript
where it is clear from context. Additionally, because voter
strategies are symmetric with respect to type, we adopt the
notational convenience of permuting the vector st so that its
i-th entry corresponds to the tally of the voter’s i-th favorite
candidate.

Playing b3 is strictly dominated, so by the iterated removal
of dominated strategies, p3 = 0 in all situations. Moreover,
since this is the final round, Waiting is strictly dominated
by voting b1, so p∅ = 0. Therefore, for any particular s,
ps1 + ps2 = 1. All probability values are bounded within
[0, 1].

Case 1: 2 ballots for the same alternative.
Agent 1’s vote is irrelevant, at that alternative is selected.

There are three outcomes, with utilities for Agent 1 being
3, 2 or 0.
Case 2: 2 ballots for different alternatives.

Agent 1 breaks ties in favor of the better option. There
are 6 outcomes here. Agent 1 may break the tie to gain her
top choice in 4 cases, and get her second choice in 2 cases.
Case 3: Agent 3 (WLOG) casts the only vote, for A = b1,1

Agent 1 also votes A and gets A as the outcome.
Case 4: Agent 3 casts the only vote, for B = b1,2

Agent 2 may be of one of three types. If Agent 2 is Type
B, then they will also vote for B. Agent 1’s vote is irrelevant,
and gets a payoff of 2. The following tables break down the
utility of Agent 1’s actions for the other two cases:

Utility breakdown if Agent 2 is Type A

Agent 2
A B

Agent 1
A A(3, 3) B(2, 2)
B B(2, 2) B(2, 2)

Utility breakdown if Agent 2 is Type C

Agent 2
C A

Agent 1
A tie(5/3, 5/3) A(3, 2)
B B(2, 0) B(2, 0)

Since Agent 2’s type is not known to Agent 1, neither
action is dominant. But we can calculate the expected utility
for each action.

E(u|b(0,1,0)1 ) =
1

3
(3p

(0,1,0)
1 + 2p

(0,1,0)
2 )

+
1

3
(
5

3
p
(0,0,1)
1 + 3p

(0,0,1)
2 )

+
1

3
(2) (4)

E(u|b(0,1,0)2 ) = 2 (5)

If there is a mixed equilibrium, then Agent 1 will be am-
bivalent over the two choices. We set equations (4) = (5),
and solve to obtain

p
(0,1,0)
1 =

4

3
p
(0,0,1)
1 − 1 (6)

We set aside this equation, and carry it forward to Case
5.
Case 5: Agent 3 casts the only vote, for C = b1,3

Agent 2 may be of one of three types. If Agent 2 is Type C,
then they will vote for C and Agent 1’s action is irrelevant,
and they get utility 0. The following tables break down the
utility of Agent 1’s actions for the other two cases:



Utility breakdown if Agent 2 is Type A

Agent 2
A B

Agent 1
A A(3, 3) tie(5/3, 5/3)
B tie(5/3, 5/3) B(2, 2)

Utility breakdown if Agent 2 is Type B

Agent 2
B C

Agent 1
A tie(5/3, 5/3) C(0, 2)
B B(2, 3) C(0, 2)

Since Agent 2’s type is not known to Agent 1, neither
action is dominant. But we can calculate the expected utility
for each action. As before, if we are at a mixed equilibrium,
we set the two expected utilities and solve to obtain

5p
(0,0,1)
1 − 1− p(0,1,0)1 = 0 (7)

More over, we can substitute equation (6) into (7) to ob-

tain p
(0,0,1)
1 = 0. But substituting this result back into Equa-

tion 6, we get p
(0,1,0)
1 = −1. A contradiction. So we are not

at a mixed equilibrium.
We then consider the pure strategy outcomes based on

the actions in Case 4 and Case 5. An agent who observes

(0, 1, 0) may play p
(0,1,0)
1 = 1 or p

(0,1,0)
2 = 1. In addition,

an agent who observes (0, 0, 1) has options p
(0,0,1)
1 = 1 or

p
(0,0,1)
2 = 1. There are four possible pure strategy combi-

nations, and we may calculate the expected payoff for each

player, in each scenario. For example, consider p
(0,1,0)
1 = 1

and p
(0,0,1)
1 = 1, where both players will play b1 regardless of

their observation. That means, if Agent 1 observed (0, 1, 0),
we will reach one of three possible outcomes: we elect A, B
or reach a Tie. Thus, the expected utility will be 20/9. We
repeat these calculations to formulate the outcomes in the
matrix below:1

Observes (0,0,1)

p
(0,0,1)
1 = 1 p

(0,0,1)
2 = 1

Observes
(0,1,0)

p
(0,1,0)
1 = 1 ( 20

9
, 14

9
) ( 8

3
, 4
3
)

p
(0,1,0)
2 = 1 (2, 1) (2, 2

3
)

Notice three of the pure strategies are dominated, leaving
only the top left cell as the unique symmetric Nash Equilib-
rium for the final round. This corresponds to the actions of
voting for the top choice regardless of the nature of
the single ballot observed. This nets an expected utility
of 20

9
if Agent 1 observed a ballot for her second choice, and

14
9

, for her third choice.
Case 6: No agent has cast any ballots, in which case Agent
1’s best response is to vote honestly and hope for the best:
1While this matrix resembles a normal form game, it is only
analogous to one. The rows and columns represent infor-
mation states that the players find themselves in, and the
actions they may take. The cell represents the payoff to the
player for a particular pure strategy the agents symmetri-
cally pursue.

p
(0,0,0)
1 = 1, with probability 5

9
of electing A, 2

9
of getting a

tie, 1
9

of getting B, and 1
9

of getting C. This results in an

expected utility of 61
27

.

Analysis: Preceding Round t

Now that we have an equilibrium analysis of the last round,
we extend our analysis to preceding rounds via backward
induction. Here, each agent has three actions, and Waiting is

not a clearly dominated action: p
(0,0,1)
1 +p

(0,0,1)
2 +p

(0,0,1)

∅ = 1,

and p
(0,1,0)
1 + p

(0,1,0)
2 + p

(0,1,0)

∅ = 1.
If Agent 1 takes the Wait action ∅, she proceeds into the

information state (t+1, s+) of the controlled game, where s+

is obtained from st by adding a number of ballots up to an
including the number of uncommitted voters, representing
new ballots cast this turn by the other voters. If Agent 1
casts a ballot b, then she enters into the uncontrolled game
(t+ 1, s+) (see Appendix B).
Case 1: 2 ballots for the same alternative.

Agent 1’s vote is irrelevant.
Case 2: 2 ballots for different alternatives.

Agent 1 breaks ties in favor of the better option.
Case 3: Agent 3 (WLOG) casts the only vote, for A = b1,1

Agent 1 also votes A and gets A as the outcome.
Case 4: Agent 3 casts the only vote, for B = b1,2

As before, we may lay out the possible actions of each
agent, based on the possible types of Agent 2 (recall if Agent
2 is type B, the outcome is decided regardless of the actions
Agent 1):

Utility breakdown if Agent 2 is Type A

Agent 2
A B ∅

Agent 1
A A(3, 3) B(2, 2) A(3, 3)
B B(2, 2) B(2, 2) B(2, 2)
∅ A(3, 3) B(2, 2) ∗(H,H)

Utility breakdown if Agent 2 is Type C

Agent 2
C A ∅

Agent 1
A tie(5/3, 5/3) A(3, 2) A(3, 2)
B B(2, 0) B(2, 0) B(2, 0)
∅ B(2, 0) A(3, 2) ∗(H,L)

Importantly, the outcome designated as ∗ represents the
outcome computed in the inductive step for the next round,
where the expected utility for a player who observes a ballot
for her second choice is H, or is L if a ballot for her last
choice is observed (H > L, and H > 2). If the current
round is t = T − 1, then H = 20

9
and L = 14

9
.

As before, we can write equations for expected utilities

and solve to show that b
(0,1,0)
2 is dominated by b

(0,1,0)

∅ , if
H ≥ 2. We solve the remaining equalities in conjunction
with Case 5 below.
Case 5: Agent 3 casts the only vote, for C = b1,3

Agent 2 may be of one of three types. If Agent 2 is Type C,
then they will vote for C and Agent 1’s action is irrelevant,
and they get utility 0. The following tables break down the
utility of Agent 1’s actions for the other two cases:



Utility breakdown if Agent 2 is Type A

Agent 2
A B ∅

Agent 1
A A(3, 3) tie(5/3, 5/3) A(3, 3)
B tie(5/3, 5/3) B(2, 2) B(2, 2)
∅ A(3, 3) B(2, 2) ∗(L,L)

Utility breakdown if Agent 2 is Type B

Agent 2
B C ∅

Agent 1
A tie(5/3, 5/3) C(0, 2) C(0, 2)
B B(2, 3) C(0, 2) B(2, 3)
∅ B(2, 3) C(0, 2) ∗(L,H)

We formulate expected utilities as before. We utilize Gam-
bit [9] to solve this subgame for the t = T − 1 case, and find

that p
(0,0,1)
2 = 0. Using this information (see Appendix A

for details), we may solve the system of equations exactly to
obtain

p
(0,1,0)

∅ = − 3H − 3L− 1

24H − 3L− 71
(8)

p
(0,0,1)

∅ =
3H − 3L− 8

24H − 3L− 71
(9)

and expected utilities

E(u|b(0,1,0)∅ ) =
4(41H − 6L− 121)

3(24H − 3L− 71)
(10)

E(u|b(0,0,1)∅ ) =
117H − 19L− 333

3(24H − 3L− 71)
(11)

In particular, for t = T − 1 of the controlled game, when
observing (0, 1, 0), Agent 1 should vote b1 with proba-

bility p
(0,1,0)
1 = 64/67 (and Wait otherwise) for an ex-

pected utility of 2.34. When observing (0, 0, 1), she

should vote b1 with probability p
(0,0,1)
1 = 49/67 for an

expected utility of 1.53.
Case 6: No ballots observed.

If no ballots are observed, all agents are in the same in-
formation set, and we may assume they act symmetrically.
We denote the probability that they play their top choice,
second choice and Wait as p1, p2, and p∅, respectively.

If Agent 1 Waits, then with probability p2∅, we enter the
next round with the tally (0, 0, 0), which gives an expected
utility of N (N = 61

27
in round T − 1). With probability

2p∅(1 − p∅), we enter the next round with one other ballot
cast (uniformly randomly selected between the candidates);
each of these outcomes gives an expected utility of 3, H,
and L. Finally, with probability (1−p∅)2, both other agents
cast their ballots. There are 9 possible outcomes (all equally
likely); Agent 1 gains her top choice in 5 cases, her second
choice in 3 cases, and her last choice in 1 case. This gives
an expected utility of 7

3
. Therefore, the expected utility of

waiting is

E(u|b(0,0,0)∅ ) = Np2∅ + 2p∅(1− p∅)
3 +H + L

3
+ (1− p∅)2

7

3
(12)

If Agent 1 votes for b1, then with probability p2∅, we en-
ter the uncontrolled game (t + 1, (1, 0, 0)), with expected
utility U1 (see Appendix B). With probability 2p∅(1 − p∅),
one other agent has blindly voted, resulting in the vote vec-
tor (2, 0, 0) (utility = 3), (1, 1, 0) (utility = 8

3
)2, or (1, 0, 1)

(utility = 1). Finally, with probability (1− p∅)2, both other
agents have blindly voted, giving a utility of 61

27
.

Thus, the expected utility for this action is

E(u|b(0,0,0)1 ) = U1p
2
∅ +

40

9
p∅(1− p∅) + (1− p∅)2

61

27
(13)

By a similar set of calculations, we get the expected utility
for casting a b2 ballot is

E(u|b(0,0,0)2 ) = U2p
2
∅ + 4p∅(1− p∅) + (1− p∅)2

49

27
(14)

where U2 is the expected utility from the uncontrolled

game (t + 1, (0, 1, 0)), and U2 < U1. Notice E(u|b(0,0,0)2 ) is

smaller than E(u|b(0,0,0)1 ) for all values of p0. Therefore, we

may assume p
(0,0,0)
2 = 0, and p

(0,0,0)
1 + p

(0,0,0)

∅ = 1.
Let us consider the difference of expected utility from the

remaining two options:

E(u|b(0,0,0)1 )− E(u|b(0,0,0)∅ )

= (U1 −N +
2

3
(H + L)− 68

27
)p2∅ + (

70

27
− 2

3
(H + L))p∅ −

2

27
(15)

Clearly, if p∅ = 0, this would result in a negative value

and E(u|b(0,0,0)1 ) < E(u|b(0,0,0)∅ ), which is a contradiction.
So we know that regardless of the values of H and L, there
is a non-zero probability that an agent Waits.

If t = T − 1, then N = U1 = 61
27

and H + L = 34
9

,

which zeroes out the p20 term, and (15) becomes 2
27

(p∅ − 1).
Therefore, p∅ = 1 and Agent 1 waits.

We carry forward the induction to t = T − 2. N = 61/27
U1 = 2.1739 and H + L = 3.8723. Equation 15 becomes
1/27(−2+0.2986p∅−0.6033p2∅), which is negative for all val-

ues of p∅. Thus, E(u|b(0,0,0)1 ) < E(u|b(0,0,0)∅ ), and so Agent
1 waits as well. Trend continues in further rounds of induc-
tion.

Therefore, regardless of the number of rounds in the elec-
tion, the rational voter always Waits until the last round
in the process before casting a sincere ballot for their
top choice. For this arrangement of candidates and voter
preferences, Sticker Voting is equivalent to a simultaneous
vote.

6. DISCUSSION & CONCLUSION
In our two simple instances of Sticker Voting, we observe

that rational voter behavior differs dramatically. In the com-
plete information game, voters will play a mixed strategy in

2Note that the Condorcet cycle is important here: if the
remaining voter is Type C, she would strategically vote for
A.



the first round, playing either their second choice or Wait-
ing; if they chose to Wait, they will break any ties in their
favor in the final round, or otherwise vote sincerely. In the
incomplete information game, voters will always exercise the
Wait option until they reach the final round, during which
they vote sincerely.

It is interesting to contrast the two behaviors. The vot-
ers in the complete information game know that the other
players are rivals, and therefore understand that there is
a first-mover disadvantage if they are greedy. Yet there is
also an incentive to concede early to secure acceptable com-
promise. In the incomplete information game, the voter is
unsure as to the nature of the other players. However, more
likely than not, one of the other players has the same type
as her, so there is an opportunity to signal cooperation. But
any incentive to do this is outweighed by the shrewdness of
Waiting until the final round, where any other players with
the same type as her will naturally coordinate their votes
out of self interest. Additionally, in sharp contrast with the
complete information game, voting second choice is never
exercised as an option.

The result of our incomplete information game is in line
with the results of Dekel and Piccione [6]. In their model,
voters must commit to voting in one of two rounds. This
decision is made prior to the election, and prior to realizing
their own preferences. They find that rational voters will al-
ways vote in the second and final round. Battaglini, Morton
and Palfrey [3] also remark in their work that latter voters
benefit from informational effects revealed by earlier vot-
ers; while their model is fundamentally different from ours,
a similar observation can be made. Finally, in Sandholm
and Vulkan’s bargaining game with deadlines [15], rational
agents will wait until the final moment before their deadline
before acting. Yet, these results appear to be at odds with
the incentives offered by the Republican and Democratic
Parties in the U.S., who award bonus delegates to states
voting later in the primary season.

Moreover, our solution for the rational voter seem unin-
tuitive when applied to human voters. In real world Sticker
Voting venues and in online polls, we do not expect to see
all (or even, a majority of) voters deliberating until the last
minute to cast their ballots. We know that humans are im-
patient and place diminishing value on future payoffs; Are
these important qualities to model in Sticker Voting? Hu-
man voters also place importance on the expressiveness of
voting – they gain satisfaction from having expressed their
opinion through voting sincerely. It would be interesting to
conduct experiments similar to Battaglini, Morton and Pal-
frey [3] to elicit data on human voting behavior when using
the Sticker Voting mechanism.

Additionally, we have made several assumptions about the
preference structure and voter behavior for tractability of
analysis. What happens when we relax these assumptions?
The Condorcet cycle in the preference structure is an impor-
tant element in at least one of the calculations in the model
(see Footnote 2). Do the results hold if such cycle are rare
in practice?

One possible model of bounded rationality that may ap-
plied to Sticker Voting is the Quantal Response Equilibrium
(QRE) model [10], where players have a nonzero probability
of playing each action, defined as a function of the expected
payoff of that action. For instance, in the logit equilibrium
(LQRE), the probability of playing an action a with ex-

pected utility u(a|a−i) where other players are using strate-
gies a−i is defined as

Pr(a|a−i) =
eλu(a|a−i)

Z

with sharpness parameter λ and normalization constant
Z. QRE has also been extended to extensive form games,
where the agents’ future actions are treated as mixed strate-
gies defined inductively [11].

Alternatively, it may be interesting to consider a setting
where some proportion of voters are impulsive, and will com-
mit to a ballot early in the voting process. How will the
presence of such voters affect the behavior of the strategic
voters? Will their actions cause a collapse in the “Waiting”
equilibrium?

Finally, it would be interesting future work to investigate
other models of deliberative agents in Sticker Voting setting.
For instance, agents may also make use of history to infer the
types of other agents, allowing them to update their beliefs
of the distribution of types in population of uncommitted
voters, and therefore strategize accordingly.

APPENDIX
A. UTILITIES FOR ROUND T

The expected utilities for playing b1, b2 or b∅ in round t,
upon observing a single ballot for C can be calculated as
follows:

E(u|b(0,0,1)∗1 ) =
1

3
(
5

3
p
(0,1,0)∗
1 + 0p

(0,1,0)∗
2 + 0p

(0,1,0)∗
∅ )

+
1

3
(3p

(0,0,1)∗
1 +

5

3
p
(0,0,1)∗
2 + 3p

(0,0,1)∗
∅ ) (16)

E(u|b(0,0,1)∗2 ) =
1

3
(2p

(0,1,0)∗
1 + 0p

(0,1,0)∗
2 + 2p

(0,1,0)∗
∅ )

+
1

3
(
5

3
p
(0,0,1)∗
1 + 2p

(0,0,1)∗
2 + 2p

(0,0,1)∗
∅ ) (17)

E(u|b(0,0,1)∗∅ ) =
1

3
(2p

(0,1,0)∗
1 + 0p

(0,1,0)∗
2 +

14

9
p
(0,1,0)∗
∅ )

+
1

3
(3p

(0,0,1)∗
1 + 2p

(0,0,1)∗
2 +

14

9
p
(0,0,1)∗
∅ ) (18)

At this point, we may use Gambit to solve the game for the
T − 1 round numerically. We get the following mixed Nash

equilibrium: p
(0,1,0)
1 = 0.96, p

(0,1,0)
2 = 0, p

(0,1,0)

∅ = 0.045,

and p
(0,0,1)
1 = 0.73, p

(0,0,1)
2 = 0, p

(0,0,1)

∅ = 0.27. This leads to
an expected utility of 2.31 for a player who observes a ballot
for her second choice, or of 1.53 for a player who observes a
ballot for her last choice.

In other words, in the second-to-last round, an agent plays
a mixed strategy between playing her top choice and waiting.
The probability of waiting is higher if she observes a ballot
supporting her last choice.

More importantly, this informs us that playing b2 is always
dominated by another strategy, when observing both (0, 1, 0)
and (0, 0, 1). This allows us to calculate the exact solution.

If we assume that p
(0,0,1)∗
2 = 0, we may substitute

p
(0,0,1)
1 + p

(0,0,1)

∅ = 1p
(0,1,0)
1 + p

(0,1,0)

∅ = 1 (19)

into the previous expected utilities:



E(u|b(0,1,0)∗1 ) =
1

3
(3) +

1

3
(
5

3
p
(0,0,1)∗
1 + 3p

(0,0,1)∗
∅ ) +

1

3
(2)

=
4

9
p
(0,0,1)∗
∅ +

20

9

E(u|b(0,1,0)∗∅ ) =
1

3
(3p

(0,1,0)∗
1 +

20

9
p
(0,1,0)∗
∅ )

+
1

3
(2p

(0,0,1)∗
1 +

20

9
p
(0,0,1)∗
∅ ) +

1

3
(2)

= − 7

27
p
(0,1,0)∗
∅

2

27
p
(0,0,1)∗
∅ ) +

7

3

E(u|b(0,0,1)∗1 ) =
1

3
(
5

3
p
(0,1,0)∗
1 + 0p

(0,1,0)∗
∅ ) +

1

3
(3p

(0,0,1)∗
1 + 3p

(0,0,1)∗
∅ )

=
5

9
p
(0,1,0)∗
1 + 1

E(u|b(0,0,1)∗∅ ) =
1

3
(2p

(0,1,0)∗
1 +

14

9
p
(0,1,0)∗
∅ )

+
1

3
(3p

(0,0,1)∗
1 +

14

9
p
(0,0,1)∗
∅ )

= − 4

27
p
(0,1,0)∗
∅ − 13

27
p
(0,0,1)∗
∅ +

5

3

If we assume the equilibrium strategy is a mixed strategy
comprised of the remaining actions, then we may also set

E(u|b(0,1,0)∗1 ) = E(u|b(0,1,0)∗∅ ), and E(u|b(0,0,1)∗1 ) = E(u|b(0,0,1)∗∅ ),
and solving gives us the system of equations:

7p
(0,1,0)∗
∅ + 10p

(0,0,1)∗
∅ = 3

−11p
(0,1,0)∗
∅ + 13p

(0,0,1)∗
∅ = 3

This solves to give us the exact solution that verifies with

the empirical solution provided by Gambit, p
(0,1,0)∗
∅ = 3/67

and p
(0,0,1)∗
∅ = 18/67.

Using this same method allows us to compute the exact
solution for any values for expected utility obtained for tak-
ing the Wait action for any given round. Let H (L) be the
expected utility gained by waiting when observing (0, 1, 0)
((0, 0, 1)), respectively. The only changes are to the util-

ity calculations for E(u|b(0,1,0)∗∅ ) and E(u|b(0,0,1)∗∅ ) (Equa-
tion (18)), as follows:

E(u|b(0,1,0)∗∅ ) =
1

3
(3p

(0,1,0)∗
1 + 2p

(0,1,0)∗
2 +Hp

(0,1,0)∗
∅ )

+
1

3
(2p

(0,0,1)∗
1 + 3p

(0,0,1)∗
2 +Hp

(0,0,1)∗
∅ ) +

1

3
(2)

=
1

3
(3p

(0,1,0)∗
1 +Hp

(0,1,0)∗
∅ )

+
1

3
(2p

(0,0,1)∗
1 +Hp

(0,0,1)∗
∅ ) +

1

3
(2)

=
1

3
(3 + (H − 3)p

(0,1,0)∗
∅ )

+
1

3
(2 + (H − 2)p

(0,0,1)∗
∅ ) +

1

3
(2)

=
(H − 3)

3
p
(0,1,0)∗
∅

+
(H − 2)

3
p
(0,0,1)∗
∅ +

7

3

E(u|b(0,0,1)∗∅ ) =
1

3
(2p

(0,1,0)∗
1 + 0p

(0,1,0)∗
2 + Lp

(0,1,0)∗
∅ )

+
1

3
(3p

(0,0,1)∗
1 + 2p

(0,0,1)∗
2 + Lp

(0,0,1)∗
∅ )

=
1

3
(2p

(0,1,0)∗
1 + Lp

(0,1,0)∗
∅ )

+
1

3
(3p

(0,0,1)∗
1 + Lp

(0,0,1)∗
∅ )

=
1

3
(2 + (L− 2)p

(0,1,0)∗
∅ )

+
1

3
(3 + (L− 3)p

(0,0,1)∗
∅ )

=
(L− 2)

3
p
(0,1,0)∗
∅ +

(L− 3)

3
p
(0,0,1)∗
∅ +

5

3

We set E(u|b(0,1,0)∗1 ) = E(u|b(0,1,0)∗∅ ), and E(u|b(0,0,1)∗1 ) =

E(u|b(0,0,1)∗∅ ), and solve:

(H − 3)p
(0,1,0)∗
∅ + (H − 10

3
)p

(0,0,1)∗
∅ = −1

3

(L− 1

3
)p

(0,1,0)∗
∅ + (L− 3)p

(0,0,1)∗
∅ = −1

3

which gives the solution

p
(0,1,0)

∅ = − 3H − 3L− 1

24H − 3L− 71

p
(0,0,1)

∅ =
3H − 3L− 8

24H − 3L− 71

B. THE UNCONTROLLED GAME
We say Agent 1 enters the uncontrolled game node (t+1, s)

when she has chosen to cast a ballot in round t, resulting
in the tally s (which includes her ballot and other ballots
submitted simultaneously in round t).

In particular, we are interested in the uncontrolled game
(t+1, (1, 0, 0)). If t+1 = T , then we know (due to symmetry)
both remaining agents will vote for their top preferences.
This gives an expected utility 61

27
as may be expected.

However, in prior rounds t+ 1 < T , the remaining agents
may be able to coordinate if they happen to vote sequen-
tially. This only matters if the remaining agents have types
B and C (a 2 in 9 chance), and depends on the probability
of them waiting upon observing the controlled information
state t + 1, s. As a result, the expected utility of entering
this uncontrolled game is

E(u|(t+ 1, (1, 0, 0))) (20)

=
1

27
(2p

t+1,(0,1,0)

∅ p
t+1,(0,0,1)

∅ + 8p
t+1,(0,1,0)

∅ − 10p
t+1,(0,0,1)

∅ + 61)

(21)

where p
t+1,(0,1,0)

∅ and p
t+1,(0,0,1)

∅ are inductively calculated
for round t+1 by Equations (8) and (9). The following table
shows the expected utility of entering the uncontrolled game
(t + 1, (1, 0, 0)), i.e. by casting a sincere ballot in round t
after observing no ballots. Notice all are strictly less than
61
27

.

Round t+ 1 T T-1 T-2
Utility 2.26 2.17 2.18



REFERENCES
[1] 2016 presidential primary election schedule.

https://www.washingtonpost.com/graphics/politics/2016-
election/primaries/schedule/. Accessed:
2016-02-01.

[2] N. Alon, M. Babaioff, R. Karidi, R. Lavi, and
M. Tennenholtz. Sequential voting with externalities:
herding in social networks. In ACM Conference on
Electronic Commerce (EC’12), page 36, 2012.

[3] M. Battaglini, R. Morton, and T. Palfrey. Efficiency,
equity, and timing of voting mechanisms. American
political science Review, 101(03):409–424, 2007.

[4] R. E. Berg-Andersson. The green papers: Democratic
detailed delegate allocation - 2012.
http://www.thegreenpapers.com/P12/D-Alloc.phtml.
Accessed: 2016-02-05.

[5] S. Callander. Bandwagons and momentum in
sequential voting. The Review of Economic Studies,
74(3):653–684, 2007.

[6] E. Dekel and M. Piccione. The strategic dis/advantage
of voting early. American Economic Journal:
Microeconomics, 6(4):162–179, 2014.

[7] Y. Desmedt and E. Elkind. Equilibria of plurality
voting with abstentions. In Proceedings of the 11th
ACM conference on Electronic commerce, pages
347–356. ACM, 2010.

[8] S. Gaspers, V. Naroditskiy, N. Narodytska, and
T. Walsh. Possible and necessary winner problem in
social polls. In Proceedings of the 2014 International
Conference on Autonomous Agents and Multiagent
Systems, pages 613–620. International Foundation for
Autonomous Agents and Multiagent Systems, 2014.

[9] R. McKelvey, A. McLennan, and T. Turocy. Gambit:
Software tools for game theory. 2002.

[10] R. D. McKelvey and T. R. Palfrey. Quantal response
equilibria for normal form games. 1993.

[11] R. D. McKelvey and T. R. Palfrey. Quantal response
equilibria for extensive form games. Experimental
economics, 1(1):9–41, 1998.

[12] S. Obraztsova, E. Elkind, M. Polukarov, and
Z. Rabinovich. Doodle poll games. AGT@ IJCAI,
2015.

[13] K. Reinecke, M. K. Nguyen, A. Bernstein, M. Näf,
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