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ABSTRACT
We consider the following budgeted online assignment problem
motivated by crowdsourcing. We are given a set of offline tasks
that need to be assigned to workers who come from the pool of
types {1, 2, . . . , n}. For a given time horizon {1, 2, . . . ,T }, at each
instant of time t, a worker j arrives from the pool in accordance
with a known probability distribution [pj t ] such that

∑
j pj t ≤ 1; j

has a known subset N ( j) of the tasks that it can complete, and an
assignment of one task i to j (if we choose to do so) should be done
before task i’s deadline. The assignment e = (i, j) (of task i ∈ N ( j)
to worker j) yields a profit we to the crowdsourcing provider and
requires different quantities of K distinct resources, as specified by
a cost vector ae ∈ [0, 1]K ; these resources could be client-centric
(such as their budget) or worker-centric (e.g., a driver’s limitation on
the total distance traveled or number of hours worked in a period).
The goal is to design an online-assignment policy such that the total
expected profit is maximized subject to the budget and deadline
constraints.
We propose and analyze two simple linear programming (LP)-

based algorithms and achieve a competitive ratio of nearly 1/(`+1),
where ` is an upper bound on the number of non-zero elements in
any ae . This is nearly optimal among all LP-based approaches.
We also propose several heuristics adapted from our algorithms
and compare them to other non-LP-based algorithms over a large
set of random instances. Experimental results show that our LP-
based heuristics significantly outperform the non-LP-based ones,
sometimes by nearly 90%.
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Keywords
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1. INTRODUCTION
Crowdsourcingmarkets (e.g., AmazonMechanical Turk orCrowd-

flower) have evolved to be powerful platforms that bring together
task performers (or workers) and task requesters (or consumers). In
recent years, problems arising from online decision making in such
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settings have been attracting tremendous attention (see the survey
[37]). A typical problem arising in such settings, considered by [6],
is to schedule a batch of consumer tasks using a pool of workers
who become available in an online fashion (i.e., in real time). More
specifically, we are given a set I of offline tasks, where each task
i ∈ I has a deadline di after which it cannot be scheduled. Workers
arrive in an online fashion (according to an adversarial or random
permutation order) and submit bids on a subset of tasks that interest
them. When a worker j arrives, a decision must be made immedi-
ately and irrevocably - either assign it an available task or reject its
service. If the worker j is allocated a task i, we must pay the worker
their bid amount bi j . The goal is to maximize the number of tasks
assigned while constrained by a given bid budget of B. Our work
deals with a natural variant of this problem.

As per standard notation, we use [n] to denote the set of integers
{1, 2, . . . , n}. Further let us assume a time horizon [T]. In this work,
we model the arrival of workers as follows. At any given instant
of time (referred to as round) t ∈ [T], a single worker is chosen
from a known pool of worker types [n] in accordance with a known
probability distribution [pj t ] such that

∑
j pj t ≤ 11 (noting that

such a choice is made independently for each round t). Current re-
lated works in the domain of mechanism design for crowdsourcing
markets mainly model the arrival pattern of online workers as either
random arrival order (e.g., [7]) or known independent identical dis-
tributions (i.i.d) (e.g., [35, 36]). Our arrival setting can be viewed
a natural generalization in the way that we allow the arrival distri-
butions change over time. Notice that we do not consider if each
worker will submit her bid truthfully when designing the allocating
policy, which is one of the major concerns of mechanism design.

Another key distinction from the previous models is that we
consider multiple budget constraints. That is, we assume that there
are K distinct resources and that each assignment e = (i, j) has
a bid cost vector ae ∈ [0, 1]K , where the k th component of the
vector corresponds to the amount of resource type k needed by the
assignment. These resources could be task-requester-centric (such
as their budget) or worker-centric (e.g., a driver’s limitation on the
total distance traveled or number of hours worked in a period).
Resource k is called integral if ae,k ∈ {0, 1} for all e, otherwise
we refer to it as non-integral. We note that [6] set a constraint that
each task be assigned at most once, while [25] generalize it to the
setting where each task may be assigned at most bi ∈ Z+ times.
Putting this in context with our work, these settings can be viewed as
special cases of our setting as follows: each task itself is an integral
resource with budget either 1 or bi respectively.

Finally, instead of maximizing the throughput (i.e., number of
tasks completed), each assignment e is associated with a known

1Here we allow that with probability 1−
∑

j pj t , none of the workers
is chosen at t.



weight or utility we and we aim to maximize the expected utility
collected from those successful assignments. [25] consider the case
where the weights are unknown and must be learned, while workers
arrive online in a random permutation order.
Our Contributions. We deal with several theoretical and practical
aspects of the above budgeted online assignment problem (BOA),
under the assumption that the arrival distribution is known in ad-
vance. Before discussing our contributions, we define a couple of
useful parameters that can help appreciate our results better. Let
`1 (resp. `2) denote the maximum number of integral (resp. non-
integral) resources requested (in a non-zero amount) in any assign-
ment cost vector ae .

First, we consider the simple and natural case where all the re-
sources are integral and each assignment requests at most `1 = `
resources. We present two simple LP-based algorithms, ALG1 and
ALG2, that are non-adaptive and adaptive respectively. Here we
say an online algorithm is adaptive if it somehow incorporates all
information observed so far including online arrivals and outcomes
of previous strategies to design the current strategy. In Section 5,
we prove the following theorems.

Theorem 1.1. There exists an online non-adaptive algorithm ALG1
for the BOA problem with a competitive ratio of 1

`+1 (1 − 1
`+1 )` ≥

1
e(`+1) , assuming all the resources are integral.

Theorem 1.2. There exists an online adaptive algorithm ALG2 for
the BOA problem with a competitive ratio of (1− ε)/(`+1), for any
given ε > 0, assuming all the resources are integral.

Our competitive ratio analysis is tight for the non-adaptive algo-
rithm ALG1 (as shown in Example 5.2). In other words, Theorem
1.1 states the best possible ratio that ALG1 could get. Another no-
table point is that ALG2 is nearly optimal among all LP (4.1)-based
approaches, i.e., all possible algorithms using the LP (4.1) as a
benchmark, since it has an integrality gap at least ` − 1+ 1/` ([21]).
The main technical challenge facing us is to lower bound Pr[∧kSk ]
for a certain family of negatively correlated events {Sk }. We de-
velop two different useful techniques (see Section 5.2 and 5.3) to
tackle this challenge and use them to prove the optimality of our
analyses.
Subsequently, we consider the general case of resources being

both integral and non-integral (see Section 6) and show that the
above theorems (i.e., Theorem 1.1 and 1.2) can be readily applied
assuming that the budget of any non-integral resource is at least
moderately large enough. More precisely, we prove these two theo-
rems. Let B be the minimum budget for any non-integral resource.

Theorem 1.3. For the BOA problem, ALG1 yields a competitive
ratio of 1

`1+1
(
(1 − 1

`1+1 )`1 − ε
)
, for any ε > 0, assuming B ≥

2 ln( `2ε )
(
1 + 3`1+2

`21

)
+ 2.

Theorem 1.4. For the BOA problem, ALG2 yields a competitive
ratio of 1−2ε`1+1 for any given ε > 0, assuming B ≥ 3 ln( `2ε )(1+ 1

`1
)+2.

In the proof of Theorem 1.4, we apply the technique of vir-
tual algorithms to tackle the technical challenge of upper bounding
Pr[

∑
i Xi ≥ (1 + δ)E[

∑
i Xi ]] for a family of positively correlated

random variables {Xi ∈ [0, 1]}. Our results show that the knowl-
edge about arrival distributions holds a significant edge over the
adversarial model or the random permutation model. Let us com-
pare our results with those of [6]. As discussed before, their setting
fits our model when `1 = `2 = 1. From Theorem 1.4, we obtain a
( 12 − ε ) competitive ratio assuming B ≥ 12 ln(1/ε ) while [6] obtain
a ratio of O( 1

Rε ln R ), assuming B ≥ R
ε and R �

max bi, j

min bi, j
(i.e., the

ratio of the largest bid to the smallest bid over all possible assign-
ments). In fact, we completely remove the dependency on R and
obtain a constant ratio while relaxing the lower bound assumption
on B significantly. Our result may be seen as theoretical evidence
to advocate the use of historical data to learn arrival distributions.

Finally, we propose various LP-based heuristics and evaluate
them against certain non-LP-based approaches. Our experiments
show that the LP-based approaches yield a far superior competitive
ratio compared to LP-blind approaches, sometimes by nearly 90%.

2. RELATED WORK
As an offline version of our model, the classic column-sparse

packing (CSP) problem has been well studied in the theoretical
computer science community. The basic setting is as follows: we
are given n items and K resources; each item i ∈ [n] has a size vector
a j ∈ [0, 1]K and a profit w j > 0; given a budget B ∈ RK+ , the goal
is to choose a subset of items such that the total profit is maximized
without violating the budget constraints. More generally, our offline
model is reduced to theMultidimensional Knapsack problem (MKP)
when there is no restriction on the sparsity of each size vector a j .
We see that the offline model such as MKP can fit our online model
as a special case when T = n and pj t = 1 iff j = t and 0 otherwise
for all j ∈ [n], t ∈ [T]. Note that we have more restrictions here:
we are not allowed to look at all the items before making decisions;
instead we have to make an instant irrevocable decision whenever
an item comes. Many common techniques such as permutation of
all items [8] and alteration [9] shown useful in the offline setting,
are not applicable to our online problems. Notice that any hardness
result from CSP problem will also apply here though.

We now briefly describe several recent results for the CSP prob-
lem. Let k be the column sparsity, i.e., the number of non-zero
entries in any column vector (this is equivalent to the parameter ` in
our BOA problem). For the general case when each a j ∈ [0, 1]K ,
[9] gave a randomized algorithm with the approximation ratio of
1/(ek + o(k)) and constructed an instance showing integrality gap
of even a strengthened LP to be at least 2k − 1. As a special case
of CSP when all a j are binary and B is integral, the k-set packing
problem is extensively studied before [11, 24, 26, 5]. Note that
[21] showed that the natural LP relaxation for k-set packing has
an integrality gap at least k − 1 + 1/k. [8] considered a stochastic
version where each a j is a binary-vector valued random variable
with each outcome having at most k non-zero elements. They ob-
tained a 2k-approximation algorithm. Further, they presented a
(k + 1)-approximation algorithm as well when each a j has mono-
tone outcomes. An important variant of the stochastic CSP problem,
known as the stochastic matching problem, arises with k = 2 and
has received considerable attention recently [14, 10, 1, 22].

As for our online model, there is a long line of research re-
lated to our problem: online bipartite matching and its variants,
which are motivated by applications to online advertisement busi-
ness. Two notable special cases, Adwords and Display Ads, have
been studied extensively in recent years: [13, 15, 16, 17, 18, 33].
Both these models can be modeled as each assignment consumes
only a single integral (Display Ads) or non-integral (Adwords) re-
source even though the potential number of distinct resources can
be huge. More recently, [28] considered a natural generalization
of Adwords, where there are multi-tier budgets forming a laminar
structure. Regarding the online arrival assumption, there are three
main categories: adversarial, random arrival order, and known dis-
tributions (see the book [32] for more details). A majority of the
recent work under known distributions, focuses on the case when
when the distributions in each round are independent and identical
(referred to as known i.i.d) [19, 23, 31, 27, 12]. We refer to another



variant of known distributions where the distributions can change
over rounds as the known adversarial. Note that this is the setting
we consider here and is more general compared to the known i.i.d as
descried before. For this setting, [4] considers the online stochas-
tic generalized assignment problem while [3] considers the online
prophet-inequality matching problem. Note that most of the current
online-matching models under known distributions can fit into our
model as a special case except the fact that some assume the cost
or bid is a random variable while we model it as deterministic here.
There are several papers considering online packing LP problem
as well under a random permutation order [29, 2]. To be specific,
[29] presented an algorithm achieving a (1 − ε )-competitive ratio,
provided B = Ω(ln(`)/ε2), where B is the largest capacity ratio and
` is the cost-vector sparsity.

3. PROBLEM STATEMENT
In this section, we present a formal statement of our problem.

Let I = {i ∈ [m]} be the set of offline tasks and J = { j ∈ [n]} be
the set of online workers. On a finite time horizon T , each task
i has a deadline di ∈ [T] after which it will become unavailable.
Let G = (I, J, E) be the bipartite graph that models the relation
between the tasks and workers: there is an edge e = (i, j) iff worker
j is interested in the task i. Let N ( j) = {i : (i, j) ∈ E} be the set
of tasks that interest worker j and N (i) = { j : (i, j) ∈ E} be the
set of workers who are interested in task i. Each edge e = (i, j)
has a weight we denoting the profit obtained by assigning task i to
worker j. Each assignment e = (i, j) has a requirement for one or
more of a given set of K types of resources. The requirement of
an assignment e is given by a K-dimensional vector ae ∈ [0, 1]K ,
where the k th dimension ae,k represents the amount of resource k
needed. Each resource type k has a budget Bk ∈ R+ that must not
be violated. For each e, let Se = {k ∈ [K] : ae,k > 0}, i.e., the set
of resources it requests.
At any instant t ∈ [T], a worker j arrives with a probability pj t

such that
∑

j pj t ≤ 1 (thus, with probability 1−
∑

j pj, t , no worker
arrives at time t). Let E j, t = {e = (i, j), i ∈ N ( j) : di ≥ t} denote
the set of available assignments for the worker j at time t. In this
paper, we assume without loss of generality that each task can be
assigned for an arbitrary number of times before its deadline. Any
potential restriction on the number of assignments can easily be
modeled by an additional budget constraint: the task itself is an
integral resource and the corresponding budget is the upper bound
on the number of assignments. For each e ∈ E j, t , we say e is safe
or valid iff for each k ∈ Se , resource k has remaining budget larger
or equal to ae,k . When a worker j arrives at t, we have to make
an immediate and irrevocable decision: either reject it or choose a
safe option e ∈ E j, t 2 and get a resultant profit we . Once a safe
assignment e is scheduled, the budget of each resource k ∈ Se will
be reduced by ae,k . Our goal is to design an online assignment
policy such that the expected profit is maximized.
In most applications, we need to deal with two kinds of resources,

namely integral and non-integral. A resource k is integral if ae,k ∈
{0, 1} for all e ∈ E and Bk ∈ Z+. On the other hand a resource k is
non-integral if ae,k ∈ [0, 1] and Bk ∈ R+. This captures resources
such as money and time that cannot be quantified as integral. Let
K1 = {1, 2, · · · , K1} and K2 = {K1 + 1, · · · , K1 + K2} denote the
set of integral and non-integral resources respectively. As defined
in the introduction, for each assignment e, |Se ∩ K1 | ≤ `1 and
|Se ∩ K2 | ≤ `2.

2In the case when some worker j can accept multiple assignments
each time, say L, we can simply add L copies of j to our graph G.

4. BENCHMARK LP
For an online algorithm ALG, the competitive ratio is defined

as the ratio of the expected performance of ALG to the expected
offline optimal over all possible realizations. A common technique
is to use an LP (we called benchmark LP) to upper bound the latter
value, thereby obtaining a lower bound on the competitive ratio.

Recall that E j, t is the set of available assignments for a worker j
arriving at t. For any t, let Et =

⋃
j E j, t be the set of all available

assignments at t. Further, for each t and e ∈ Et , let xe, t be the
probability that we make the assignment e at t in the offline optimal
solution. Our benchmark LP can now be described as follows:

maximize
∑
t

∑
e∈Et

we xe, t (4.1)

subject to
∑

e∈E j, t

xe, t ≤ pj t ∀ j ∈ J, t ∈ [T] (4.2)

∑
t

∑
e∈Et

xe, t ae,k ≤ Bk ∀k ∈ [K] (4.3)

0 ≤ xe, t ≤ 1 ∀e ∈ E, t ∈ [T] (4.4)

Lemma 4.1. The optimal value to LP (4.1) is a valid upper bound
for the offline optimal.

Our benchmark LP is essentially the same as that used in [3] and
[4]. The detailed proof can be found there. We provide a rough
proof here.

Proof. The simple idea is to show that all the constraints in the above
LP are valid for the offline optimal. For each given t and worker j,∑

e∈E j, t
xe, t can be interpreted as the sum of the expected number

of assignments related to j we could make in the offline optimal,
which is surely no larger than the probability that j comes at t. This
justifies constraints (4.2). Any offline algorithm should satisfy the
budget constraints as well and by linearity of expectation, we see
constraints (4.3) are valid. �

5. THE CASE OF INTEGRAL RESOURCES
In this section, we consider the case when K2 = 0, i.e., all

resources are integral with ae,k ∈ {0, 1} and Bk ∈ Z+ for all e ∈ E
and k ∈ [K]. Let `1 = `, i.e., each assignment requests at most `
(integral) resources.

As shown in Section 2, the k-set packing problem can be refor-
mulated as a special case here. Thus from [21], it follows that even
for the special case of unit budget, i.e., Bk = 1 for all k ∈ [K], LP
(4.1) has an integrality gap at least `−1+1/`. That implies by using
the LP (4.1) as the benchmark, we cannot get an online algorithm
achieving a ratio beating 1/(` − 1 + 1/`).

5.1 A simple non-adaptive algorithm
In this section, we present a simple LP-based non-adaptive algo-

rithm. Suppose {x∗e, t |t ∈ [T], e ∈ Et } is an optimal solution for the
LP (4.1). The main idea behind our algorithm (described in Algo-
rithm 1) is as follows: at each time t when some worker j arrives,
if safe make the assignment e ∈ E j, t with probability αx∗e, t/pj, t ,
where α ∈ (0, 1] is a parameter that will be optimized later.

We note that the last step of Algorithm 1 is well defined because∑
e∈Ê j, t

αx∗e, t/pj t ≤
∑

e∈E j, t
x∗e, t/pj t , which is at most 1.

Theorem 5.1. By choosing α = 1
2` , ALG1 achieves an online

competitive ratio of at least 1
4` .

Proof. WLOG assume that t = T and fix an assignment e ∈ ET .
Recall that Se is the set of resources requested by e. For each k ∈ Se ,



Algorithm 1: A simple non-adaptive algorithm (ALG1)
1 For each time t, assume some worker j arrives.
2 Let Ê j, t ⊆ E j, t be the set of safe available assignments we can
make for j.

3 If Ê j, t = ∅, then reject j; otherwise sample at most one
assignment e ∈ Ê j, t with probability αx∗e, t/pj t .

let Sk be the event that e is safe at T with respect to a resource k.
We now lower bound the value Pr[∧k ∈Se

Sk ]. Fix one such k ∈ Se .
Let Uk be the usage of resource k at the beginning of t = T and
Xe′, t ′ be the indicator random variable for assignment e′ ∈ Et ′

chosen at t ′ ∈ [T − 1]. We have Uk =
∑

t ′<T
∑

e′∈Et′
Xe′, t ′ae′,k .

By definition, e is safe with respect to resource k iff Uk ≤ Bk − 1.
Observe that E[Xe′, t ′] ≤ αx∗e′, t ′ . By Markov inequality we see

Pr[Uk ≤ Bk − 1] = 1 − Pr[Uk ≥ Bk ] ≥ 1 − α (5.1)

Thus we get

Pr[∧k ∈Se
Sk ] = Pr



∧
k ∈Se

(
Uk ≤ Bk − 1

) ≥ 1 − `α (5.2)

So we get that for the given (e, t), e will be made with probability at
least αx∗e, t (1−`α). By setting α = 1

2` , we get that each assignment
e is made with probability at least x∗e, t/(4`). �

5.2 A tight analysis for ALG1 with unit budget
In this section, we consider a special case when Bk = 1 for all

k ∈ K and show a tight analysis for ALG1. Consider the following
example.

Example 5.1. Consider an unweighted star graph G = (I, J, E)
where |I | = 1, |J | = 3, E = (e1, e2, e3) with T = 2 and d1 = T (no
deadline constraints). Suppose at t = 1, j = 1, 2 arrives with equal
probability 1/2 and at t = 2, j = 3 will arrive with probability 1.
Let e1, e2, e3 denote respectively the assignment we consider when
j = 1 comes at t = 1, j = 2 comes at t = 1 and j = 3 comes at
t = 2. Let K = 2 with B = (1, 1) and ae1 = (1, 0), ae1 = (0, 1) and
ae3 = (1, 1). Suppose LP (4.1) offers us such an optimal solution:
x∗e1 = x∗e2 = 1/2 and x∗e3 = 1/2 (notice that unweighted). Let us
analysis the assignment e3 when j = 3 comes at t = 2 by running
ALG1.

According to ALG1, at t = 1 we will choose e j with probability
α whenever j = 1 or j = 2 comes. Notice that at t = 2, the first
and the second resource are each safe with respective probability
1 − α/2 and both of the two are safe with probability 1 − α. �

The above example suggests us two things: (1) the events that
two different resources are safe can be negatively correlated. This
means we can not apply the FKG inequality which is widely used in
the offline version [9, 8, 10] to replace the union bound in inequality
(5.2); (2) we could potentially strengthen the lower bound that each
resource is safe, which is currently obtained by Markov inequality
(5.1). Nowwe follow these ideas to present a tight analysis for ALG1
for the case of unit budget.

Theorem 5.2. By choosing α = 1
`+1 , ALG1 has an online compet-

itive ratio of 1
`+1 (1 − 1

`+1 )` with unit budget.

Proof. As before, we consider the case that t = T and an assignment
e ∈ ET . For each t ′ < T and k ∈ Se , let Ek, t ′ = {e′ |e′ ∈ Et ′, Se′ 3

k} be the set of assignments which are available at t ′ and participate
in the budget constraint of k. Let Bk, t ′ be the (random) budget of k
at the beginning of t ′. Define Ak, t ′ = (Bk, t ′+1 = 1|Bk, t ′ = 1) and

At ′ = ∧k ∈Se
Ak, t ′ =

(
∧k ∈Se

Bk, t ′+1 = 1| ∧k ∈Se
Bk, t ′ = 1

)
We see that

Pr[Ak, t ′] = 1−
∑

e′∈Ek, t′

αx∗e′, t ′, Pr[At ′] ≥ 1−
∑

e′∈∪k∈Se Ek, t′

αx∗e′, t ′

It follows that

Pr[∧k ∈Se
Sk ] =

∏
t ′<t

Pr[At ′] ≥
∏
t ′<t

*.
,
1 −

∑
e′∈∪k∈Se Ek, t′

αx∗e′, t ′
+/
-

(5.3)
The above inequality can be made tight when {Ek, t ′ |k ∈ Se } is

disjoint for each t ′. Here are two useful observations. The first one
is

∑
e′∈∪k∈Se Ek, t′

αx∗e′, t ′ ≤
∑

e′∈Et′
αx∗e′, t ′ ≤ α. The second one

is ∑
t ′<T

∑
e′∈∪k∈Se Ek, t′

αx∗e′, t ′ ≤
∑
k ∈Se

∑
t ′<T

∑
e′∈Ek, t′

αx∗e′, t ′ ≤ α`

These two observations lead to the fact that the rightmost expression
of inequality (5.3) has aminimumvalue of (1−α)` . Therefore ewill
be made at t with overall probability x∗e, tα(1 − α)` . By choosing
α = 1/(` + 1), we prove our claim. �

The example below shows the above analysis is tight.

Example 5.2. Consider a star graph G = (I, J, E) where |I | =
1, |J | = ` + 1, E = {e j | j ∈ [J]} with T = J. Let d1 = T , i.e.,
no deadline constraints. For each t ∈ [T], pj = 1 if j = t and 0
otherwise. In other words, at each time t ∈ [T], only worker j = t
will come surely and no one else. Suppose we use a j and x∗j to
denote the terms ae j and x∗e j , t= j

before. Let K = ` with B = 1
(dimension of K) and a j = e j for each j ≤ `, where e j is the jth
standard-basis unit vector, and a j = 1 for j = ` + 1. Suppose LP
(4.1) offers us such an optimal solution: x∗j = 1 − ε for each j ≤ `
and x∗

`+1 = ε .
Now focus on the assignment e = eJ when j = J comes at

t = T . Let us analyze the probability that e is safe at T , denoted by
Pr[Se,T ], in ALG1 with some parameter α ∈ (0, 1). Notice that e
will be safe at t = T iff none of e j, j ≤ ` is made before. According
to ALG1, each time t, e j=t will be made with probability equal to
αx∗j
p j
= α(1 − ε ). That implies Pr[Se,T ] = (1 − α(1 − ε ))` , which

matches our lower bound as shown in the proof of Theorem 5.2. �

5.3 A tight analysis for ALG1 with general inte-
gral budget

In Section 5.2, we give a tight analysis for ALG1 for the case of
unit budget. Intuitively, we should be in a better situation when
each Bk is larger than 1. For example, by the Chernoff bound, we
see that the probability that the usage of resource k at T overflows
Bk should decrease exponentially as Bk gets larger. In this section,
we give a tight analysis for ALG1 by extending the result in Theorem
5.2 to the case of general integral budget.

Let us present an equivalent but simpler model of our problem.
Suppose we have K types of balls and for each type k ∈ [K], the
number of balls is Bk ∈ Z+. We have a set of choices E = {e|e ∈ E}
and each choice is associated with a binary vector ae ∈ {0, 1}K ,
which has at most ` non-zero elements. Once we make the choice
e, we will take one ball of type k whenever ae,k = 1. For each



time t ∈ [T], one choice e will arrive with probability x∗e, t such that∑
e∈E x∗e, t ≤ 1 for each t. Each time t, for whatever choice comes,

we will accept it non-adaptively with some probability α ∈ (0, 1).
Consider a fixed choice e and t = T and let Se ⊆ K be the set of
types of balls choice e will take. For each k ∈ Se , let Sk be the
event that at t = T , we still have at least one ball of type k left. Our
question is that how the adversary minimize Pr[∧k ∈Se

Sk ] subject
to the constraints (1)

∑
t ∈[T−1] x∗e, t ae,k ≤ Bk for each k ∈ Se and

(2)
∑

e∈E x∗e, t ≤ 1 for each t. The equivalence between this new
model and our original problem can be seen as follows: (1) each
assignment corresponds a choice here; (2) for some assignment e
with deadline t, we set x∗e, t ′ = 0 for all t ′ > t. Thus we can safely
ignore the deadline issue as far as ALG1 is considered.

Consider a given k ∈ Se . Let Ek = {e ∈ E |ae,k = 1} be the
set of choices e that participate in the resource constraint of k. Let
x∗
k, t
=

∑
e∈Ek

x∗e, t . Notice that x∗
k, t
≤ 1 and at time t, one of

the choices in Ek arrives with probability x∗
k, t

. Let Ak, t be the
indicator random variable that one of the choices in Ek arrives at
t and Ak =

∑
t≤T−1 Ak, t , which denotes the random number of

arrivals of choices in Ek over T − 1 rounds. For an integral A and
B, let p(A, α, B) � Pr[Z ≤ B − 1] where Z ∼ Bi(A, α) (binomial
distribution) and we assume p(A, α, B) = 1 for any 0 ≤ A ≤ B − 1.
Now consider a given set A = {Ak |k ∈ Se }.

Lemma 5.1.

Pr[Sk |Ak ] ≥ p(Ak, α, Bk ), Pr[∧k ∈Se
Sk |A] ≥

∏
k ∈Se

p(Ak, α, Bk )

Proof. Consider a given k and Ak . Given Ak trials and each time
we take one ball independently with probability at most α. Thus we
end at at least Bk − 1 balls with probability at least p(Ak, α, Bk ).
Notice that the events {(Sk |Ak ) |k ∈ Se } are positively correlated
by the FKG inequality [20], which yields the second inequality. �

Lemma 5.2.

Pr[∧k ∈Se
Sk ] ≥

∏
k ∈Se

exp
(
E

[
ln(p(Ak, α, Bk ))

] )
Proof. First notice that Pr[∧k ∈Se

Sk ] = EA
[
Pr[∧k ∈Se

Sk |A]
]
by

conditioning on the event A. From Lemma 5.1, we see the latter
should be at least EA

[∏
k ∈Se

p(Ak, α, Bk )
]
. Thus

Pr[∧k ∈Se
Sk ] = EA

[
Pr[∧k ∈Se

Sk |A]
]
≥ EA



∏
k ∈Se

p(Ak, α, Bk )


= EA


exp

(∑
k

ln(p(Ak, α, Bk ))
) ≥ exp

(∑
k

E
[
ln(p(Ak, α, Bk ))

] )
=

∏
k ∈Se

exp
(
E

[
ln(p(Ak, α, Bk ))

] )
�

The inequality in the second line to the third line is due to Jensen’s
inequality. Recall that Ak =

∑
t≤T−1 Ak, t where Ak, t is a Bernoulli

random variable indicating if a choice e ∈ Ek arrives at t. Notice
that E[Ak ] =

∑
t≤T−1 x∗

k, t
≤ Bk .

Lemma 5.3. For any α ∈ [0, 12 ] and integer Bk ≥ 1,

EAk
[ln(p(Ak, α, Bk ))] ≥ ln(1 − α)

We can show that in the worst scenario, the adversary will desig-
nate each Ak as a Poisson random variable with mean Bk such that
EAk

[ln(p(Ak, α, Bk ))] gets minimized. The full proof of Lemma

5.3 can be seen in the full version. Now we have all ingredients to
prove Theorem 1.1.

Proof. The proof is very similar to that of Theorem 5.2. Consider a
given assignment e and t = T −1 w.l.o.g. Notice that α = 1

`+1 ≤
1
2 .

From Lemma 5.2 and 5.3, we see that Pr[∧k ∈Se
Sk ] ≥ (1 − α)` .

Thus by plugging in α = 1
`+1 , we prove our claim. �

5.4 Simulation-based adaptive algorithm
In this section, we present a simulation-based algorithm. The

main idea is as follows. Suppose we aim to develop an online
algorithm achieving a ratio of γ ∈ [0, 1]. Consider an assignment
e = (i, j) ∈ Et when worker j arrived at some time t. Let Se, t
be the event that e is safe conditioning on the arrival of e at t. By
simulating the current strategy up to t, we can get an estimation
of Pr[Se, t ], say βe, t , within an arbitrary small error. Therefore in
the case e is safe at t, we can sample it with probability xe, t

p j, t

γ
βe, t

,
which leads to the fact that e is sampled with probability γxe, t
unconditionally.

The simulation-based attenuation technique has been used to at-
tack other stochastic optimization problems as well such as stochas-
tic knapsack [30] and stochastic matching [1]. Assume for now
we can always get an accurate estimation βe, t of Pr[Se, t ] for all t
and e (It is easy to see that the sampling error can be folded into a
multiplicative factor of (1 − ε ) in the competitive ratio by standard
Chernoff bounds). The formal statement of our algorithm, denoted
by ALG2, is as follows.

Algorithm 2: Simulation-based adaptive algorithm (ALG2)
1 For each time t, assume some worker j arrives.
2 Let Ê j, t ⊆ E j, t be the set of safe available assignments we can
make for j.

3 If Ê j, t = ∅, then reject j; otherwise sample an assignment

e ∈ Ê j, t with probability
x∗e, t
p j, t

γ
βe, t

.

Note that βe, t is the value of Pr[Se, t ], which assumes to be
known exactly through simulation. To ensure the above algorithm
works with parameter γ, it suffices to show that βe, t ≥ γ for all
possible t and e.

Lemma 5.4. By choosing γ = 1/(` + 1), we have βe, t ≥ γ for all
t ∈ [T] and e ∈ Et .

Proof. The proof is similar to that of Theorem 5.1. Consider a given
t and e ∈ Et . Focus on a given k ∈ Se and let Uk, t be the usage
of resource k at the beginning of t. For each t ′ < t and e′ ∈ Et ′ ,
let Xe′, t ′ be the indicator random variable that e′ is chosen at t ′.
Notice that Uk, t =

∑
t ′<t Xe′, t ′ae′,k .

Now we prove by induction on t. For the base case t = 1, we see
βe, t = 1 for all e ∈ Et . Thus we claim is valid. Assume our claim
works for all t ′ < t, which leads to the fact that for all e′ ∈ Et ′ with
t ′ < t, e′ will be made at t ′ with probability exactly equal to x∗e′, t ′γ.
In other words, E[Xe′, t ′] = x∗e′, t ′γ. Consider the event that e is safe
at t with respect to resource k. By Markov’s inequality, we have

Pr[Uk, t ≤ Bk − 1] = 1 − Pr[Uk, t ≥ Bk ] ≥ 1 − γ

Thus we have

Pr[Se, t ] = Pr


∧
k ∈Se

(
Uk, t ≤ Bk − 1

) ≥ 1 − `γ ≥ γ



The last inequality is valid since γ ≤ 1/(` + 1). �

The above Lemma validates ALG2. By manipulating the simula-
tion error in a proper way as shown in [1, 30], we can make sure that
final ratio will have a relative error at most ε for any given ε > 0.
Thus we prove our claim for Theorem 1.2. Note that the running
time will depend on 1/ε polynomially.

6. EXTENSION TO COMBINED INTEGRAL
AND NON-INTEGRAL RESOURCES

Recall that K2 is the set of non-integral resources and for each
k ∈ K2, all ae,k ∈ [0, 1]. Let B = mink ∈[K2] Bk and we assume
B is large. In this section, we discuss how to extend the results
in Section 5 here when non-integral resources are added with the
large B assumption. In particular, we are interested in how large B
should be such that we lose at most ε in the competitive ratio. By
default we assume K1 , ∅ and `1 ≥ 1.

6.1 Extension of ALG1
In this section, we analyze the performance of ALG1 with param-

eter α = 1/(`1 + 1) ≤ 1/2 when non-integral resources are added.
Recall that in ALG1, each assignment e is made at t non-adaptively
with probability at most αx∗e, t . Let Xe, t,Ye, t indicate if e is made
at t and if e is safe at t respectively. Let Ze, t indicate if e comes and
gets sampled at t when e is safe at t. Here we treat Ze, t is Bernoulli
random variable with mean αx∗e, t and independent from Ye, t in the
following way: when e comes at t while e is not safe, we continue
to set Ze, t = 1 with probability αx∗e, t/pj, t and 0 otherwise, i.e.,
pretending e is safe. Observe that (1) Xe, t = Ye, t Ze, t ≤ Ze, t ;
(2) For any two random variables Ze, t and Ze′, t ′ , the two will be
independent if t , t ′ and negatively correlated if t = t ′. Now we
start to prove Theorem 1.3.

Proof. Focus on a given t and an assignment e ∈ Et . Let S1 =
Se ∩K1 and S2 = Se ∩K2. Let Sk, t be the event that e is safe with
respect to resource k at t. From the analysis of Theorem 1.1, we
see that Pr[∧k ∈S1Sk, t ] ≥ (1 − α)`1 . Now we focus on analyzing
the value Pr[∧k ∈S2Sk, t ]. Let Uk, t be the usage of resource k at the
beginning of t, i.e., Uk, t =

∑
t ′<t

∑
e′∈Et′

Xe′, t ′ae′,k .
Notice that for each k ∈ S2,

Pr[Sk, t ] ≥ 1 − Pr[Uk ≥ Bk − 1]

= 1 − Pr[
∑
t ′<t

∑
e′∈Et′

Xe′, t ′ae′, t ′ ≥ Bk − 1]

≥ 1 − Pr[
∑
t ′<t

∑
e′∈Et′

Ze′, t ′ae′, t ′ ≥ Bk − 1]

Let Hk, t =
∑

t ′<t
∑

e′∈Et′
Ze′, t ′ae′, t ′ . Notice that (1)E[Hk, t ] ≤

αBk and (2) former discussion shows that {Ze′, t ′ |e′ ∈ Et ′, t ′ <
t} are 1-correlated as defined in [34]. Thus from there, we can
effectively view them as “independent” and apply the Chernoff
bound to upper bound the value Pr[Zk, t ≥ Bk −1]. WLOG assume
Bk = B and we have

Pr[Hk, t ≥ B − 1] ≤ exp *
,

−αB( B−1αB − 1)2

B−1
αB + 1

+
-

= exp
(
−
1 − α − 1/B
1 + α − 1/B

(B(1 − α) − 1)
)

≤ exp
(
−
1
2
1 − α
1 + α

(B(1 − α) − 1)
)

To get the last inequality we assume B ≥ 4. Thus

Pr[∧k ∈S2Sk, t ] ≥ 1 − `2 exp
(
−
1
2
1 − α
1 + α

(B(1 − α) − 1)
)
� 1 − ε

We solve that it will suffice B ≥ 2 ln( `2ε )
(
1 + 3`1+2

`21

)
+ 2. In this

case, we get a competitive ratio of 1
`1+1

(
(1 − 1

`1+1 )`1 − ε
)
.

�

6.2 Extension of ALG2
Suppose we aim for a competitive ratio of γ = 1−ε

`1+1 for ALG2
where the multiplicative loss ε is due to the adding of non-integral
resources (we ignore all simulation errors first and handle them
later). This implies, for each time t and assignment e, we try to
maintain that e is made at t with probability equal to 1−ε

`1+1 . From
the analysis in Section 5.4, it would suffice to show at each time t,
e is safe with probability βe, t ≥ γ. Focus on a given assignment
e and let Sk, t be the event that e is safe at t with respect to the
resource k. Let S1 = Se ∩ K1 and S2 = Se ∩ K2. From the proof
of Lemma 5.4, we see that all integral resources are safe at t with
probability Pr[∧k ∈S1Sk, t ] ≥ 1− (1−ε)`1

`1+1 . Thus the remaining issue
is to show that Pr[∧k ∈S2Sk, t ] ≥ 1− ε , which by union bound leads
to the fact that βe, t = Pr[∧k ∈Se

Sk, t ] ≥ γ = 1−ε
`1+1 .

Section 6.1 shows that when B is large, all non-integral resources
are almost safe throughout T in ALG1 by applying Chernoff bound
and union bound. As for ALG2, the same analysis failed due to
the following challenges: (1) we cannot upper bound Xe, t by some
independent or negatively correlated Ze, t as before; (2) {Xe, t } itself
can be positively correlated as shown in the following example.

Example 6.1. Consider an unweighted star graph G = (I, J, E)
where |I | = 1, |J | = 3, E = (e1, e2, e3) with T = 2. Suppose at
t = 1, j = 1, 2 arrives with equal probability pj = 1/2 and at t = 2,
j = 3 will arrive with probability pj = 1. Let e1, e2, e3 denote
respectively the assignment we consider when j = 1, 2 comes at
t = 1 and j = 3 comes at t = 2. Let K = 2 with B = (1, 1) and
ae1 = (1, 0), ae1 = (0, 1) and ae3 = (0, 1). Suppose LP (4.1) offers
us the following optimal solution: x∗e1 = x∗e2 = 1/2 and x∗e3 = 1/2.
In our context, `1 = 1, γ = 1/2 and ALG2 goes as follows: at t = 1,
e1 and e2 will be made with probability 1/2 when each comes; at
the beginning of t = 2, e3 is safe with probability β = 3/4 and
accordingly, it will be made with probability

x∗3
p3

γ
β =

1
3 when it

comes.
Recall that Xe, t indicates if the assignment e is made at t. We can

verify that Pr[Xe1, t=1 = 1] = x∗1/2 = 1/4 and Pr[Xe3, t=2 = 1] =
x∗3/2 = 1/4. Pr[Xe3, t=2 = 1|Xe1, t=1 = 1] = 1/3, that is because e3
is safe with probability 1 at t = 2 conditioning on Xe3, t=2 = 1. �

We use the technique of virtual algorithms to attack the potential
positive correlation among {Xe, t }. Suppose we run ALG2 with
some parameter γ up to the time t such that for each e′ and t ′ < t,
Pr[Xe′, t ′ = 1] = γx∗e′, t ′ . Now we try to lower bound the value
βk, t � Pr[Sk, t ] for a given e and k ∈ S2 with S2 = Se ∩ K2.
Consider the simple setting where only one non-integral resource

k is involved. Suppose we run ALG1 with parameter α = γ
1−δ as

a virtual algorithm up to time t and let β′
k, t

(δ) = Pr[S′
k, t

] be the
probability that e is safe at time t with respect to resource k in the
virtual algorithm. Here δ = o(1) when B → ∞.

Lemma 6.1. For any δ with β′
k, t

(δ) ≥ 1− δ, we have βk, t ≥ 1− δ.

Proof. Consider a feasible δ with β′
k, t

(δ) ≥ 1− δ. For each e′ and
t ′ < t, let X ′e′, t ′ indicate that e′ is made at t ′ in the virtual algorithm.



WeseePr[X ′e′, t ′] =
γx∗

e′, t′

1−δ Pr[e′ is safe at t ′] ≥ γx∗e′, t ′ . Notice that
in our algorithm ALG2 with parameter γ, each assignment e′ will
be made with probability equal to γx∗e′, t ′ . Therefore we claim that
in ALG2, βk, t = Pr[Sk, t ] ≥ Pr[S′

k, t
] = β′

k, t
≥ 1 − δ. �

Now we have all ingredients to prove Theorem 1.4.

Proof. Focus on an assignment e and t. Ignore the simulation
error first and we try to show that when B ≥ 3 ln( `2ε )(1 + 1

`1
) + 2,

Pr[Sk, t ] ≥ 1 − ε
`2

for each k ∈ S2.
Lemma 6.1 tells us that we just need to find a feasible δ such

that β′
k, t
≥ 1 − δ. In this case, we have Pr[Sk, t ] ≥ 1 − δ and

setting ε = `2δ will complete the proof. Consider the virtual
algorithm ALG1 with parameter α = (1−ε)/(`1+1)

1−δ and let Hk, t =∑
t ′<t

∑
e′∈Et′

Ze′, t ′ae′, t ′ where Pr[Ze′, t ′ = 1] = α for each e′

and t ′ < t. Notice that Pr[S′
k, t

] ≥ 1 − Pr[Hk, t ≥ B − 1] and
E[Hk, t ] ≤ αB. WLOG assume E[Hk, t ] = αB and `1 ≥ 2. Let
∆ = B−1

αB − 1. We have

∆ = (1 −
1
B

)
(1 − δ)(1 + `1)

1 − ε
− 1

=
`1 + ε − δ − δ`1

1 − ε
−

1
B

(1 − δ)(1 + `1)
1 − ε

≥
1 − δ
1 − ε

(
`1 −

`1 + 1
B

)
≥ 1

The last inequality assumes that B ≥ 3 ≥ 1+ 2
`1−1 . Therefore by

the Chernoff Bound, we have

Pr[Hk, t ≥ B − 1] = Pr
[
Hk, t ≥ E[Hk, t ](1 + ∆)

]

≤ exp
(
−
1
3

B(1 − ε )
(`1 + 1)(1 − δ)

1 − δ
1 − ε

(
`1 −

`1 + 1
B

))
= exp

(
−
1
3

B
(
1 −

1
B
−

1
`1 + 1

))
which implies that

Pr[Sk, t ] ≥ Pr[S′k, t ] ≥ 1 − exp
(
−
1
3

B
(
1 −

1
B
−

1
`1 + 1

))
When B ≥ 3 ln( `2ε )(1+ 1

`1
)+2, we can verify that the right-hand

side value at least 1 − δ = 1 − ε
`2
. Thus we prove our claim that for

each k ∈ S2, Pr[Sk, t ] ≥ 1 − ε
`2
, which yields that ALG2 achieves

a ratio of (1 − ε )/(`1 + 1). After incorporating the simulation
error, we will have an additional multiplicative factor (1 − ε ) in the
competitive ratio. Thus we prove Theorem 1.4.

�

7. EXPERIMENTAL EVALUATION
In this section, we propose and evaluate a number of heuristic

algorithms for the BOA problem. We start with the case when only
integral resources are involved. Section 5 shows that non-adaptive
ALG1 and adaptive ALG2 can achieve a ratio of at least 1

`+1
1
e and

1
`+1 respectively, where ` is the upper bound of integral resources
requested by each assignment. In our experiments, we show that the
performance is far better than these theoretical worst case bounds
(such bounds hold only for some extremely specialized cases such
as the one shown in Example 5.2).

Our experimental setup is as follows.

1. For each j, recall that N ( j) is the set of tasks that interest j.
We generate N ( j) by sampling each i ∈ [m] independently
with some probability, say 0.3. We propose to study the
sensitivity to this parameter further in the future.

2. Let P1 be the arrival probability matrix of size n×T such that
P1(i, j) = pi, j . We first generate a random “seed” matrix
P0 of size n × T1 such that for each t ∈ [T1], the values in
the t th column of P0 are uniformly distributed over [0, 1]
conditioning on the column sum is 1, i.e.,

∑
t P0(i, t) = 1.

We achieve this by running the file “randfixedsum.m” due to
Roger Stafford 3. Once we have a fixed P0, we generate P1 by
sampling one column from P0 uniformly for T times. Notice
that if we generate P1 in the direct way as P0, then each j will
have almost the same arrivals over T rounds since T assumes
to be very large. In our case we set T1 = m � T and we
hope we can create some potential bias of the arrivals over all
j ∈ [n] and that can pass to P1.

3. Let E be the set of assignments generated as shown in the first
point. For each assignment e ∈ E, we independently choose
a uniform value we ∈ [0, 1].

4. Recall thatK1 andK2 are the set of integral and non-integral
resources respectively. We generate a budget Bk by uniformly
sampling an integer from [UB] = {1, 2, 3, . . . ,UB} for each
k ∈ K1 and from [LB, 5 ∗ LB] for each k ∈ K2 respectively.
Here UB and LB are parameters specified in advance.

5. Recall Se is the set of resources requested by e. For each
e, we first generate a random permutation π1 over K1 and
then set Se ∩ K1 as the first dρ0 ∗ K1e elements of π1. Set
ae,k = 1 for each k ∈ Se ∩ K1. We then generate another
random permutation π2 over K2 and set Se ∩ K2 as the first
dρ0 ∗K2e elements of π2. Sample a uniform value from [0, 1]
for ae,k for each k ∈ Se ∩K2. Here ρ0 ∈ [0, 1] is a parameter
given in advance.

6. For each e, let de be the deadline of e. We sample a random
integer from [T/2,T] uniformly as de for each e ∈ E. In this
experiment we consider a relative more flexible setting: allow
assignments with respect to a single task to have potentially
distinctive deadlines.

Let ALG1(α) denote the algorithm shown in Section 5.1 with
parameter α. Theorem 1.1 shows that ALG1( 1

`+1 ) can achieve a
ratio at least 1

`+1
1
e . Our experimental results suggest that it will

be too conservative for the choice of α = 1
`+1 . This inspires us to

propose the following four heuristics. All these four algorithms are
non-adaptive essentially except the last one. Consider some time t
when j comes and let E j, t = {e = (i, j) |i ∈ N ( j), de ≥ t} be the set
of available (not necessarily safe) assignments related to j.

1. NAdap: sample an assignment e ∈ E j, t with probability
x∗e, t∑

e∈Ej, t
x∗e, t

. Make it iff e is safe.

2. ALG1(1): sample an assignment e ∈ E j, t with probability
x∗e, t
p j, t

. Make it iff e is safe.

3. USamp: sample an assignment e ∈ E j, t uniformly from E j, t .
Make it iff e is safe.

4. Greedy: choose the assignment e ∈ E j, t , which has the
largest weight we among all safe options in E j, t .

Remark: (1) the first two are both LP-based non-adaptive algo-
rithms; the third is non-adaptive but blind to the LP solution; the
last one is adaptive and blind to the LP solution as well, the strategy
3 https://www.mathworks.com/matlabcentral/fileexchange/9700-
random-vectors-with-fixed-sum/content/randfixedsum.m



gets updated as the set of safe options shrinks in later rounds; (2) the
second can be viewed as the first one plugged with an attenuation

factor
∑

e∈Ej, t
x∗e, t

p j, t
≤ 1. (3) we did not test ALG2 since the im-

plementation is really time-consuming even on moderate problem
size.

For each set of parameters P = (m, n, K1, K2,T,UB, LB, ρ0), we
generate a set I(P) of 5 random instances as described before. For
each instance I ∈ I(P), we run the above five algorithms each on I
for 100 times and take the mean as the final performance. For each
given instance I, let OPT(I) be the LP optimal value and ALG(I) be
the final performance on I. Wedefine ρ(ALG, I) = ALG(I)/OPT(I),
which is the ratio of performance of ALG to the LP value on I. For
each set of parameters P = (m, n, K1, K2,T,UB, LB, ρ0), we gen-
erate 5 random instances as described before and set the mean ratio
as ρ(ALG,P) for each ALG. The results can be seen in Figures 1, 2
and 3. The detailed discussion can be found in the full version.
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Figure 1: Performance of the four algorithms as UB increases
where: m = 10, n = 50, K1 = 90, K2 = 0,T = 3000, ρ0 = 0.1. The
best LP-based heuristic ALG1(1) (red-colored) strictly beats the best
LP-blind strategy Greedy (blue-colored).
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