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ABSTRACT
While matching markets are ubiquitous, much of the work
on stable matching assumes that both sides of the market
are able to fully specify their preferences. However, as the
size of matching markets grows, this assumption is unreal-
istic, and so there is interest in understanding how agents
may use interviews to refine their preferences over alterna-
tives. In this paper we study a market where one side (e.g.
hospital residency programs) maintains a common prefer-
ence master list, while the other side (e.g residents) have
individual preferences which they can refine by conducting
a limited number of interviews. The question we study is
How should residents choose their interview sets, given the
choices of others? We describe a payoff function for this
imperfect information game, and show that this game al-
ways has a pure strategy equilibrium. Moreover, for certain
structures of residents’ utility there is a unique Bayesian
equilibrium in which residents interview assortatively: with
k interviews, each resident group rkj+1, ..., rkj+k interviews
with hospitals hkj+1, ..., hkj+k. For Borda-based linear util-
ity functions, this equilibrium only exists when two inter-
views are allowed. We show this equilibrium varies for other
utility functions, including exponential, and show general
results regarding when this equilibrium does and does not
exist.

1. INTRODUCTION
Real world matching problems are ubiquitous and cover

many domains. One of the most widely studied matching
problems is the canonical stable matching problem (SMP)
[11]. Finding a stable matching is key in many real-world
matching markets including college admissions, school choice,
reviewer-paper matching, various labor-market matching prob-
lems [21], and, famously, the residency matching problem,
where residents are matched to hospital programs via a cen-
tralized matching program (such as the National Residency
Matching Program, NRMP, in the United States) [24].

This notion of stability, where no one in the market has
both the incentive and ability to change their partner, has
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been empirically shown to be very valuable for real-world
markets. For example, centralized mechanisms that pro-
duced a stable match tended to halt unraveling in residency
matching programs, while unstable mechanisms tended to
be abandoned [24]. Many matching markets that produce
stable matches implement the Deferred Acceptance (DA)
mechanism, introduced in Gale and Shapley’s seminal pa-
per [11].

However, to guarantee stability, stable matching mecha-
nisms assume that participants are able to rank all their
options. Assuming that participants do not have any in-
formation burden or interviewing budget is simply not the
case in real-world markets: for example, in the NRMP in
2015, 27,293 positions were offered by 4,012 hospital pro-
grams [22], however residents tend to apply to an average
of only 11 programs, spending between $1,000 to $5,000 [2].
This implies that, even if resident-proposing Deferred Ac-
ceptance (rp-da) is the mechanism used, residents must be
strategic about what hospital programs they choose to in-
terview with, as they cannot be matched to a program with
which they do not interview. Furthermore, by not carefully
choosing with whom to interview, residents face the possibil-
ity of not being matched at all. There is significant evidence
of this happening, as an aftermarket (SOAP) exists for the
NRMP; with SOAP having matched 1,129 positions to resi-
dents in 2015, or 4.14% of the initial available positions [22].
We thus wish to study interviewing equilibria, not stability,
for matching markets.

In spite of there being many examples where it is not
feasible for participants to specify full preferences over all
alternatives, there has been only limited work which has
addressed participants’ strategic considerations (notable ex-
ceptions include [6, 5, 16]). There similarly is little work
investigating how people people choose their interviews in
practice, though there is some work that suggests people
tend to interview assortatively (i.e., in tiers): the best can-
didates apply to the best schools/hospitals, and the worst
candidates apply to the worst schools/hospitals (e.g., [1]).

In this paper, using the residency matching problem as
a motivating example, we initiate a study of the equilib-
rium behavior of participants who must decide with whom
to interview, knowing they are participating in a central-
ized matching market running the resident-proposing de-
ferred acceptance algorithm. In particular, under the as-
sumption that hospitals maintain a master list, a commonly
known fixed ranking over all residents, and that residents



can interview with at most k hospitals, we study which sub-
set of hospitals residents will choose to interview and then
rank. Many real-world matching markets use master lists;
for example, university entrances in Turkey and China are
determined by test scores [12, 25], as is high-school choice in
Mexico City and Ghana [7, 1]. We further note that stating
our problem using master lists also provides results for other
problems: this problem can be re-contextualized as a serial
dictatorship mechanism with known picking order [3].

We first formalize a payoff function for any resident in this
game and show that a pure strategy equilibrium always ex-
ists under general conditions on the distributions and valua-
tion functions from which residents’ underlying preferences
are drawn. We then turn to investigating when assortative
interviewing forms an equilibrium, under various assump-
tions regarding residents’ preferences. We instantiate resi-
dents’ preferences as drawn from a φ-Mallows model (i.e.,
resident’s idiosyncratic preferences are described by a noisy
universal ranking). Under this setting, we provide a condi-
tion that is sufficient (though not necessary) to guarantee
assortative interviewing. We further instantiate agents’ val-
uation functions using classes of scoring rules from the social
choice literature [4], for which there exists some evidence
suggesting they may approximate the structure of partici-
pants preferences [17, 19]. We study the interplay between
valuation-function structure, interview-budget size and as-
sortative interviewing. For small interviewing budgets (of
size 2 or 3), assortative interviewing may be an equilibrium
depending on the valuation functions of residents and if the
dispersion is not too large. However, for larger interviewing
budgets our results indicate that for a large segment of res-
ident preference structures, assortative interviewing is not
an equilibrium.

2. RELATED RESEARCH
While there is a large body of research on the problem

of finding stable matchings for various markets and mar-
ket conditions (including when master lists are present, e.g.
[13]), there has been significantly less work on the inter-
viewing problem in which we are interested. Interviews are
information-gathering activities and one research direction
has looked at interviewing policies which attempt to min-
imize the number of interviews conducted while ensuring
that a stable matching is found. Rastegari et al. showed
that while finding the minimal interviewing policy is NP-
hard in general, there are special cases where a polynomial-
time algorithm exists [23]. Drummond and Boutilier looked
at a similar problem, using minimax regret and heuristic ap-
proaches for interviewing policies [10] . Neither of these pa-
pers study strategic issues arising when agents get to choose
with whom they wish to interview.

Motivated by the college admissions problem, Chade and
co-authors have looked at how students may strategically
apply to colleges, where they assume that there is an agreed-
upon ranking of the colleges, but that students’ quality or
caliber is determined by a noisy signal [6, 5]. This work in-
vestigates how students decide where to apply in a decentral-
ized market. We instead focus on centralized matching mar-
kets which result in stable matchings. Coles et al. [8] discuss
signalling in matching markets. They assume that agents’
preferences are distributed according to some (restricted)
distributions, known a priori, and each agent knows their
own preferences. Firms can make at most one job offer, and

workers can send one signal to a firm indicating their inter-
est, paralleling, in some sense, a very restricted interviewing
problem. Under this setting, firms can often do better than
simply offering their top candidate a job, though there are
also examples where signalling may be harmful [14]. Again,
the market structure in these works is quite different than
the centralized matching markets we are interested in.

The work most closely related to the problem in this paper
is by Lee and Schwarz [16]. They studied an interviewing
game where firms and workers (or hospitals and residents)
interview with each other in order to be matched. They for-
mulate a two-stage game where firms were required to first
choose workers to interview for some fixed cost. The in-
terview action reveals both workers’ and firms’ preferences,
which are then revealed to a market mechanism running
(firm-proposing) DA. They showed that if there is no coor-
dination then firms’ best response is picking k workers at
random to interview. However, if firms can coordinate then
it is best for them to each select k workers so that there
is perfect overlap (forming a set of disconnected complete
bipartite interviewing subgraphs). This result relies heavily
on the assumption that all firms and workers are ex-ante ho-
mogeneous, with agents’ revealed preferences being idiosyn-
cratic and independent. This assumption is very strong; for
the results to hold either agents have effectively no infor-
mation about their preferences before they interview, or the
market must be perfectly decomposable into homogeneous
sub-markets that are known before the interviewing process
starts. In this paper we study a similar interviewing game,
but use a different (and we believe, more realistic) set of
assumptions on the structure and knowledge of preferences.

3. MODEL
There are n residents and n hospital programs. The set

of residents is denoted by R = {r1, ..., rn}; the set of hos-
pital programs is denoted by H = {h1, ..., hn}. We are
interested in one-to-one matchings which means that res-
idents can only do their residency at a single hospital, and
that hospitals can accept at most one resident. A match-
ing is a function µ : R ∪ H → R ∪ H, such that ∀r ∈ R,
µ(r) ∈ H ∪ {r}, and ∀h ∈ H, µ(h) ∈ R∪ {h}. If µ(r) = r or
µ(h) = h then we say that r or h is unmatched. A matching
µ is stable if there does not exist some (r, h) ∈ R×H, such
that h �r µ(r) and r �h µ(h).

Both hospitals and residents have (strict) preferences over
each other, and we let H� and R� denote the sets of all
possible preference rankings over H and R respectively. We
assume that hospitals have identical preferences over all res-
idents, which we call the master list, �H . Without loss of
generality, let �H= r1 � r2 � . . . � rn where ri �H rj
means that ri is preferred to rj , according to �H . We fur-
ther assume that the master list is common knowledge to
all members of H and R. That is, all hospitals agree on the
preference ranking over residents and each resident knows
where they, and all others, rank in the list. While each resi-
dent, r, has idiosyncratic preferences over the hospitals, we
assume that these are drawn i.i.d. from some common dis-
tribution D , and that this is common knowledge. If resident
r draws preference ranking η from D , then hi �η hj means
that hi is preferred to hj by r under η. We assume there is
some common scoring function v : H ×H� 7→ R, applied to
rankings η drawn from D such that, given any η ∈ H� with
hi �η hj , v(hi, η) > v(hj , η).



Critical to our model is the assumption that residents do
not initially know their true preferences, but can refine their
knowledge by conducting a number of interviews, not ex-
ceeding their interviewing budget k. We let I(rj) ⊂ H
denote the interview set of resident rj , and |I(rj)| ≤ k
for some fixed k ≤ n. Once rj has finished interviewing,
rj knows her preference ranking over I(rj). She then sub-
mits this information to the matching algorithm, resident-
proposing deferred acceptance (rp-da). The matching pro-
ceeds in rounds, where in each round unmatched residents
propose to their next favorite hospital from their interview
set to whom they have not yet proposed. Each hospital
chooses its favorite resident from amongst the set of resi-
dents who have just proposed and its current match, and the
hospital and its choice are then tentatively matched. This
process continues until everyone is matched. The resulting
matching, µ, is guaranteed to be stable, resident-optimal,
and hospital-pessimal [11]. This matching is also guaran-
teed to be unique, as stable matching problems with master
lists have unique stable solutions [13]. Thus our results di-
rectly hold for any mechanism that returns a stable match,
including hospital-proposing deferred acceptance, and the
greedy linear-time algorithm [13].

3.1 Description of the Game
We now describe the Interviewing with a Limited Budget

game:

1. Each resident r ∈ R simultaneously selects an inter-
viewing set I(r) ⊂ H, based on their knowledge of D
and the hospitals’ master list �H , where |I(r)| ≤ k.

2. Each resident, r, interviews with hospitals in I(r) and
discovers their preferences over members of I(r).

3. Each resident reports their learned preferences over
I(r) and reports all other hospitals as unacceptable.
Each hospital reports the master list to a centralized
clearinghouse, which runs resident-proposing deferred
acceptance (rp-da), resulting in the matching µ.

3.2 Payoff function for Interviewing with a Lim-
ited Budget

Let M be the set of all matchings, and let µ denote the
ex-post matching resulting from all agents playing the Inter-
viewing with a Limited Budget game. In order for resident
rj to choose their interview set I(rj) ⊂ H, she has to be
able to evaluate the payoff she expects to receive from that
choice, where the payoff depends on both the actual prefer-
ence ranking she expects to draw from D , the interview sets
of the other residents, and the expected matching achieved
from the mechanism as described. Crucially, we observe that
rj need only be concerned about the interview set of resident
ri when ri �H rj . If rj �H ri then, because we run rp-da,
rj would always be matched before ri with respect to any
hospital they both had in their interview set. Thus, we can
denote rj ’s expected payoff for choosing interview set S by:
urj (S) = urj (S|D , I(r1), ..., I(rj−1)).

Given fixed interviewing sets I(r1), ..., I(rj−1), and some
partial match m = µ|r1,...,rj−1

, we must compute the prob-

ability that m happened via rp-da. Let m(ri) denote who
resident ri is matched to under m. For any ri, there is a
set of rankings consistent with ri being matched with m(ri)
under rp-da (and the hospitals’ master list �H). Denote

this set as T (ri,m). Formally, T (ri,m) ⊆ H� is:

T (ri,m) = {ξ ∈ H�|∀h′ ∈ H s.t. h′ ∈ I(ri) ∧ h′ �ξ m(ri),

∃ra s.t. ra �H ri ∧m(ra) = h′}

Given the interviewing sets of residents r1, . . . , rj−1, the
probability of partial match m is

P (m|I(r1), ..., I(rj)) =
∏

ri∈{r1,...,rj−1}

∑
ξ∈T (ri,m)

P (ξ|D). (1)

where P (ξ|D) is the probability that some resident drew
ranking ξ ∈ H� from D .

Using Eq. 1, we can now determine the probability that
some hospital h is matched to rj using rp-da, when rj has
interviewed with set S, and has preference list η. We simply
sum over all possible matches in which this could happen.
Because rp-da is resident optimal, and all hospitals have a
master list, any hospital that rj both interviews with and
prefers to h must already be matched. We formally define
the set of such matchings, M∗(S, η, I(r1), ..., I(rj−1)):

M∗(S, η, I(r1), ..., I(rj−1), h) =

{m ∈M |m(rj) = h; ∀ri ∈ {r1, ..., rj−1}m(ri) ∈ I(ri);
and ∀x ∈ S, if x �η h, ∃ri ∈ {r1, ..., rj−1} s.t. x ∈ I(ri) and m(ri) = x}

Thus, the probability that h is matched to rj using rp-
da given η, S, and the interviewing sets for all residents
preferred to rj on the hospitals’ master list is

P (µ(h) = rj |η, S, I(r1), ..., I(rj−1)) =
∑

m∈M∗(S,η,I(r1),...,I(rj−1),h)

P (m|I(r1), ..., I(rj−1)).

(2)

For readability, we will frequently refer to
P (µ(h) = rj |η, S, I(r1, ..., I(rj−1) as P (µ(h) = rj |η, S). Fi-
nally, we have all of the building blocks to formally define
the payoff function. Recall that v(h, η) is the imposed utility
function, dependent on η: for any given η, v(h, η) is fixed.
Then, our payoff function is:

urj (S) =
∑
h∈S

∑
η∈H�

v(h, η)P (η|D)P (µ(h) = rj |η, S, I(r1), ..., I(rj−1))

(3)

Intuitively, what the payoff function in Eq. 3 does is weight
the value for some given alternative by how likely rj is to be
matched to that item, given the interview sets of the “more
desirable” residents, r1, . . . , rj−1.

As an illustrative example, imagine there are two resi-
dents, r1 and r2, each of whom have interviewed with hospi-
tals h1 and h2. Resident r1 will be matched with whomever
she most prefers, while r2 will be assigned the other. The
probability that r2 will be assigned h1 is simply the probabil-
ity that r1 drew ranking h2 � h1, while the probability that
r2 is matched to h2 is the probability that r1 drew ranking
h1 � h2.

3.3 Probabilistic Preference Models
While our payoff-function formulation, described in the

previous section, is general in that we do not instantiate it
with a particular distribution function, we do assume that
some distribution is used over the space of possible rank-
ings of hospitals. The Mallows model is characterized by a
reference ranking σ, and a dispersion parameter φ ∈ (0, 1],1

1A φ-Mallows model is not well defined for φ = 0, but if all
residents are guaranteed to draw the reference ranking, the
equilibrium is trivial.



which we denote as Dφ,σ. Let A denote the set of alterna-
tives that we are ranking, and let A� denote the set of all
permutations of A (the index i ∈ [1, n] in ai ∈ A indicates
rank in σ). The probability of any given ranking r is:

P (r|Dφ,σ) =
φd(r,σ)

Z

Here d is Kendall’s τ distance metric, and Z is a normalizing
factor; Z =

∑
r′∈P (A) φ

d(r,σ) = (1)(1 + φ)(1 + φ+ φ2)...(1 +

...+ φ|A|−1) [18].
As φ→ 0, the distribution approaches drawing the refer-

ence ranking σ with probability 1; when φ = 1, this is equiva-
lent to drawing from the uniform distribution. The Mallows
model (and mixtures of Mallows) have plausible psychomet-
ric motivations and are commonly used in machine learning
[20, 15, 18]. Mallows models have also been used in previ-
ous investigations of preference elicitation schemes for stable
matching problems (e.g., [9, 10]).

To prove our equilibria results, we will need additional re-
sults regarding properties of Mallows models. To the best
of our knowledge, the following have not been stated previ-
ously, and may be of more general interest. Proofs omitted
due to space constraints

Lemma 1. Given some Mallows model Dφ,σ with fixed
dispersion parameter φ and reference ranking σ = ai � aj,
then the probability that a ranking η is drawn from Dφ,σ

such that ai �η aj is equal to drawing from some distribu-

tion Dφ,σ′ where σ is a prefix of σ′. By symmetry, this proof
also holds when σ is a suffix of σ′.

Corollary 2. Given any reference ranking σ and two
alternatives ai, ai+1, P (ai � ai+1|Dφ,σ) = 1

1+φ
.

Corollary 3. Given any reference ranking σ and three
alternatives ai, ai+1, ai+2 and some η ∈ {ai, ai+1, ai+2}�,
then the probability that we draw some ranking β consistent

with η is: P (β|Dφ,σ) = φ
d(η,ai�ai+1�ai+2)

(1+φ)(1+φ+φ2)
.

Lemma 4. The probability ai will be ranked in place j is
φ|j−i|

1+φ+...+φn−1 .

Lemma 5. Let η ∈ Dφ,σ in which aj �η ai for i < j, then

P (η) < φj−i

Z
.

4. GENERAL EQUILIBRIA FOR INTERVIEW-
ING MARKETS WITH MASTER LISTS

We provide an equilibrium analysis for the game presented
in Section 3. We first show that a pure equilibria for this
game always exists, even under arbitrary distributions and
scoring functions, but may be computationally infeasible to
directly calculate. We then instantiate this model for various
distributions and scoring functions, focusing on one family of
distributions: the φ-Mallows model. We provide a necessary
and sufficient condition for assortative interviewing under a
Mallows model and then investigate what values of φ and
k will result in assortative interviewing for various scoring
functions.

4.1 General Equilibria for Interviewing Mar-
kets with Master Lists

We start our analysis by studying the most general form
of the Interviewing with a Limited Budget game, and show
that a pure strategy equilibrium always exists.

Theorem 6. A pure strategy always exists for the Inter-
viewing with a Limited Budget game.

Proof. We wish to show that if every resident chooses
their expected utility maximizing interviewing set, this forms
a pure strategy. Given any resident rj who is jth in the hos-
pitals’ rank ordered list, rj ’s expected payoff function only
depends on residents r1, ..., rj−1. As rj knows that each
other resident ri is drawing from distribution D i.i.d., she
can calculate r1, ..., rj−1’s expected utility maximizing in-
terview set, using Eq. 3. Her payoff function depends only
on D and I(r1), ..., I(rj−1), both of which she now has. She
then calculates the expected payoff for each

(
n
k

)
potential in-

terviewing sets, and interviews with the one that maximizes
her expected utility.

We note that Theorem 6 is an existence theorem and does
not provide any additional insight into the equilibrium be-
havior, nor does it provide guidance as to how such an equi-
librium might be computed. Our next result begins to pro-
vide some intuition as to equilibrium behavior. In particular
it shows that if residents have interviewing budgets of size
k and the equilibrium behavior for resident rk is to inter-
view assortatively (i.e. it chooses to interview with hospitals
h1, . . . , hk), then assortative interviewing is the equilibrium
strategy for all residents.

Proposition 7. Given an interviewing budget of k inter-
views, some known distribution from which residents draw
their preferences D and a scoring function v, if resident
rk’s best response to all others interview assortatively is to
interview assortatively, then assortative interviewing is an
equilibrium for all residents.

(Proof omitted due to space constraints)

4.2 Interviewing Equilibria Under Mallows Mod-
els with Master Lists

In this section we instantiate the distribution from which
residents are drawing their preferences with a Mallows model
in order to gain a deeper understanding of the results from
the previous section. In particular, we provide a character-
ization of when assortative interviewing will form an equi-
librium for this class of resident-preferences. Before prov-
ing our main result, we require some additional lemmas ad-
dressing characteristics of assortative interviewing in Mal-
lows models.

All proofs are omitted due to space constraints.

Lemma 8. Given an interviewing budget of k interviews,
a dispersion parameter φ, and a scoring function v, if res-
ident rk prefers interviewing with hospitals {h1, ..., hk} to
{h1, ..., hk+1} \ {hj} for all hj ∈ {h1, ..., hk}, then for resi-
dent rk, interviewing with {h1, ..., hk} dominates interview-
ing with any other set of size k.

We now provide a necessary and sufficient condition for as-
sortative interviewing to hold when residents draw their
preference from a Mallows model with dispersion φ. Let
P (hi avail) denote the probability that hospital hi is avail-
able for resident rk (i.e., residents r1, ..., rk−1 are all matched
to different alternatives). As we assume residents r1, ..., rk−1

interview assortatively, only one of {h1, ..., hk} will be avail-
able.



Lemma 9. Given an interviewing budget of k interviews,
a dispersion parameter φ, and a scoring function v, if res-
idents r1, ..., rk−1 all interview assortatively (i.e., with hos-
pital set S = {h1, ..., hk}), satisfying the following inequality
for all hj ∈ {h1, ..., hk} when S′ = S \ {hj} ∪ {hk+1} is both
sufficient and necessary to show that assortative interview-
ing is an equilibrium for resident rk:

P (hj avail)E(v(hj)|Dφ,σ) ≥

P (hj avail)E(v(hk+1)|Dφ,σ)+ (4)∑
η∈H�

P (η|Dφ,σ) ·
[ ∑
hi∈S′

P (hi avail)χ(hk+1 �η hi)v(hk+1, η)
]

Where χ(hi �η hj) is an indicator function that is 1 iff
hi �η hj, and 0 otherwise.

Theorem 10. Given an interviewing budget of k inter-
views, a dispersion parameter φ, and a scoring function v,
satisfying the inequality found in Lemma 9 for all hj ∈
{h1, ..., hk} is both sufficient and necessary to show that as-
sortative interviewing is an equilibrium for all residents.

Proof. This follows directly from combining Proposition
7 and Lemma 9.

We now provide a more simplified condition for assortative
interviewing, that is sufficient, though not necessary (and
leave the proof to the appendix):

Lemma 11. Given an interviewing budget of k interviews,
a dispersion parameter φ, and a scoring function v, if res-
idents r1, ..., rk−1 all interview assortatively (i.e., with hos-
pital set S = {h1, ..., hk}), satisfying the following inequality
for all hj ∈ {h1, ..., hk} when S′ = S \{hj}∪{hk+1} is suffi-
cient to show that assortative interviewing is an equilibrium
for resident rk:

P (hj avail)E(v(hj)|Dφ,σ
) ≥

P (hj avail)E(v(hk+1)|Dφ,σ
) +

∑
hi∈S′

P (hi avail)E(v(h′k)|D
φ,σ′

)
φ

Z(1− φ)

(5)

(Where σ′ is equivalent to the reference ranking σ with
one element hi s.t. hj �σ hi removed, and h′k is the kth
item in σ′.)

Though we primarily discuss assortative interviewing as
it is a technique commonly used in real-world interviewing
markets, we note that the n/k complete disjoint bipartite
subgraph equilibrium shown in Lee and Schwarz for uniform
distributions on both sides of the market also holds when one
side is drawing uniform iid (equivalently, a Mallows model
with φ = 1.0), and the other side has a master list.

Observation 12. When residents draw iid from uniform,
and hospitals have a master list, an equilibrium exists such
that the interviewing graph forms n/k complete disjoint bi-
partite subgraphs. Moreover, any resident rik+j interviews
with hospitals {h(j−1)k+1, . . . , hjk}.

5. ASSORTATIVE EQUILIBRIA FOR SMALL
BUDGETS

We now discuss assortative equilibria when participants’
interviewing budget is k ≤ 3. We do so by instantiating
specific scoring rules, and investigating under what circum-
stances assortative interviewing forms an equilibrium. We

now formally define Borda, plurality, and exponential scor-
ing rules, following definitions typically used in voting. We
define all scoring rules with a multiplicative factor of 1, and
an additive factor of 0, as these terms do not affect the anal-
ysis. For any slot si, v(si) = n− i+ 1 in Borda, where n is
the number of alternatives in the market. Under plurality,
v(s1) = 1, v(si) = 0 for all i > 1. We investigate a class
of exponential functions that are dominated by the function
v(si) = ( ε

2
)i−1, 1 > ε > 0.

The proofs for the following two lemmas are omitted due
to space constraints

Lemma 13. If for a particular interviewer budget k, a dis-
persion parameter φ, the condition of Lemma 14 is satisfied
for a plurality valuation function with a strict inequality,
then there are exponential valuations which form an assor-
tative equilibrium.

In particular, any exponential valuation dominated by ( ε
2
)(i−1)

satisfies this condition, with ε > 0 determined by k.

Lemma 14. A necessary and sufficient condition for as-
sortative interviewing under plurality is:

P (hj avail) ≥ φk−j+1 (6)

This follows from instantiating plurality into Eq. 6, applying
Lemmas 7 and 4, and simplifying.

5.1 Assortative Interviewing with Two Inter-
views

We provide direct proofs showing that assortative inter-
viewing is an equilibrium for Borda and plurality. Exponen-
tial follows directly from Lemma 13.

Theorem 15. Given plurality as residents’ scoring func-
tion and a budget of k = 2 interviews, for a Mallows model
with dispersion parameter φ such that 0 < φ ≤ 0.6180, as-
sortative interviewing forms an equilibrium.

Proof. We begin by using the condition from Lemma 14.
We provide the calculation for h1; h2 follows analogously
(providing a bound of 0 < φ ≤ 0.7549). We thus wish to
show conditions on φ s.t. P (h1 avail) ≥ φ2,when resident
r2 is choosing their interview set. For r2, h1 is available
iff r1 happened to draw a ranking over her preferences s.t.
h2 � h1. Then, by Corollary 2, P (h1 avail) = φ

1+φ
, implying

we need to satisfy the equation φ
1+φ

≥ φ2, which is true
whenever 0 < φ ≤ 0.6180.

Theorem 16. Given Borda as residents’ scoring function
and a budget of k = 2 interviews, for a Mallows model dis-
persion parameter φ such that 0 < φ ≤ 0.2650, assortative
interviewing forms an equilibrium.

Proof. Because of Lemma 7, we only need to show that
assortative interviewing is an equilibrium when 0 < φ ≤
0.265074 for resident r2, and it will hold for all ri. Fur-
thermore, by Lemma 8, we only need to prove that {h1, h2}
dominates both {h1, h3} and {h2, h3} to show that it domi-
nates all other possible interviewing sets of size 2.

We prove that choosing {h1, h2} is better than choosing
{h2, h3}, for all values of φ such that 0 < φ ≤ 0.265074.
We prove this by summing over all possible preference rank-
ings that induce a specific permutation of the alternatives
h1, h2, h3. We then pair these summed permutations in



such a manner that makes it easy to find a lower bound
for ur2({h1, h2}) − ur2({h2, h3}). This lower bound is en-
tirely in terms of φ, meaning that for any φ such that this
bound is above 0, it will be above 0 for any market size n.

We look at three cases, pairing all possible permutations
of h1, h2, h3 as follows:
Case 1: all rankings η consistent with h2 � h1 � h3 or η′

consistent with h2 � h3 � h1;
Case 2: all rankings η consistent with h1 � h2 � h3 or η′

consistent with h3 � h2 � h1;
Case 3: all rankings η consistent with h1 � h3 � h2 or η′

consistent with h3 � h1 � h2.
Note that as we have enumerated all possible permuta-

tions of h1, h2, h3, these three cases generate every ranking
in H�. Furthermore, for any one of the three cases, we can
iterate over only all possible rankings η that are consistent
with the first member of the pair, and generate the ranking
η′ consistent with the second member of the pair by sim-
ply swapping two alternatives in the rank. Moreover, given
some η, the number of discordant pairs in η′ is simply the
number in η, plus the number of additional discordant pairs
between h1, h2, h3 caused by swapping the two alternatives.

For clarity, let ur2({h1, h2})−ur2({h2, h3}) = U1+U2+U3,
where U1, U2, U3 correspond to our three cases. We also
introduce the notation Pµ(ri)(h) to denote the probability
that ri is matched to hospital h under matching µ. That
is, Pµ(ri)(h) = P (µ(ri) = h). The case proofs proofs are
omitted due to space constraints

Once considering all cases, we combine them together:

ur2 ({h1, h2})− ur2 ({h2, h3}) ≥
φ2

(1 + φ)(1 + φ)(1 + φ+ φ2)
(1− φ) +

2(φ− φ3 − φ4)
(1 + φ)(1 + φ)(1 + φ+ φ2)

−
φ

(1 + φ)(1 + φ)(1 + φ+ φ2)

( φ

(1− φ)4
+

1

3(1− φ)3
+

2

3

)
(1 + φ)

+
φ2

(1 + φ)(1 + φ)(1 + φ+ φ2)
(1− φ) (7)

Thus, Eq. 7 gives us a lower bound for the difference in
expected utility between {h1, h2} and {h2, h3} for resident
r2, for all n. Using numerical methods to approximate the
roots of Eq. 7, we get that there is a root at 0, and a root
at φ ≈ 0.265074.

As the calculations are analogous, we omit the discussion
of their derivation, but it can be shown that:

ur2 ({h1, h2})− ur2 ({h1, h3}) ≥
1

(1 + φ)(1 + φ+ φ2)

[
1 + φ− 2φ2 − 2φ3 − 2φ3

( φ

(1− φ)4
+

1

3(1− φ)3
+

2

3

)]
(8)

Using numerical methods, it can be shown that this is posi-
tive for 0 < φ < 0.413633.

Thus, for the interval 0 < φ ≤ 0.265074, we have shown
that r2’s best move in this interval is to interview with
{h1, h2}. Then, by Lemma 7, this is an equilibrium for all
ri as required.

5.2 Assortative Interviewing with Three Inter-
views

Unlike when only two interviews are present, assortative
interviewing is not an equilibrium under Borda when partic-

ipants have a budget of 3 interviews. Under plurality (and
exponential), assortative interviewing is still an equilibrium.

Theorem 17. Assortative interviewing is not guaranteed
to be an equilibrium under the Borda valuation function,
even for any φ.

(Proof omitted due to space constraints)
Under Borda, an assortative interviewing equilibrium is

not guaranteed to exist, even for any 1 ≥ φ > 0. However,
we now show that assortative interviewing is an equilibrium
for plurality (and thus exponential) for k = 3:

Theorem 18. Given an interviewing budget of k = 3 in-
terviews, and the plurality scoring function, assortative in-
terviewing is an equilibrium for 0 < φ ≤ 0.4655.

Proof. For k = 3, we simply check Eq. 6 from Lemma 14
with hj = h1, h2, h3. We find that the marginal contribution
from h1 is less than the marginal contribution of h2 or h3,
and thus only present the calculation for h1. We directly
compute P (h1 avail), by multiplying the probability that r1
did not take h1, and multiplying it by the probability that
r2 did not take h1, given that r1 also did not take h1. To
calculate this we enumerate the probabilities of any possible
rankings:

P (h1 avail) = P (µ(r1) 6= h1)P (µ(r2) 6= h1|µ(r1) 6= h1)

P (h1 avail) = (
φ+ 2φ2 + φ3

(1 + φ)(1 + φ+ φ2)
)(

φ2 + 2φ3

(1 + φ+ φ2)
)

Using numerical methods to find the roots of P (h1 avail)−
φ3, we can show that Eq. 6 holds when 0 < φ ≤ 0.4655.

6. ASSORTATIVE EQUILIBRIA FOR LARGE
BUDGETS

We begin by providing a few final results regarding prop-
erties of interviewing under Mallows models, including that
when there is a setting for which there is no assortative equi-
libria for plurality, then there is no valuation function with
assortative equilibria. We use this result to show that, for
sufficiently small φ and a large enough budget of interviews
(k > 3), assortative interviewing cannot be an equilibrium
under any valuation function. We then provide a specific
counterexample for all φ when k = 4 for plurality, implying
there is no assortative equilibrium for any valuation func-
tion. This suggests that, for a wide category of resident
valuation functions under Mallows, contrary to real-world
behavior, assortative interviewing is not an equilibrium.

Lemma 19. Given a Mallows model with dispersion pa-
rameter φ, assortative interviewing for residents r1, ...., rk−1,
and a hospital hi ∈ {h1, ..., hk} (i.e., the residents’ interview
set), then any profile η1, . . . , ηn−1 ∈ Dφ,σ of k−1 preferences
(for r1, . . . , rk−1) such that hi is available for rk has a prob-
ability of: P (r1 = η1, r2 = η2, . . . , rk−1 = ηk−1|hi avail) <
φγ

Zk−1 , where γ =
∑k−i
j=1 j.

Proof. In order for hi to be available, there need to
be r′i+1, . . . , r

′
k with preference orders ηi+1, . . . , ηk ∈ Dφ,σ

such that they were assigned hospitals hi+1, . . . , hk. Hence,
hi+1 �ηi+1 hi, . . . , hk �ηk hi. According to Lemma 5, the

probability for each of these events is at least φ
Z
, . . . , φ

k−i

Z
(respectively). Since they are independent of each other, and
since the maximal probability for any particular η ∈ Dφ,σ

is 1
Z

, the probability of a particular preference set occurring

in which hi is available is at least φγ

Zk−1 .



Theorem 20. If for a particular interviewer budget k, a
dispersion parameter φ, when using plurality valuation there
are no assortative equilibria due to h1 violating Lemma 9’s
condition, then for that k and φ there is no assortative equi-
libria for any valuation function.

Proof. Looking at the condition of Lemma 9

P (hj avail)E(v(hj)|Dφ,σ) ≥

P (hj avail)E(v(hk+1)|Dφ,σ)+∑
η∈H�

P (η|Dφ,σ)
[ ∑
hi∈S′

P (hi avail)χ(hk+1 �η hi)v(hk+1, η)
]

We again begin by expanding the value expectation (E)This
can be divided to n different inequalities:

P (hj avail)P (hj in s1)v(s1) ≥ v(s1)[P (hj avail)P (hk+1 in s1)+∑
η∈H�|

hk+1 in s1

P (η|Dφ,σ)
∑
hi∈S′

P (hi avail)χ(hk+1 �η hi)]

...

P (hj avail)P (hj in sn−1)v(sn−1) ≥
v(sn−1)[P (hj avail)P (hk+1 in sn−1)+∑

η∈H�|
hk+1 in sn−1

P (η|Dφ,σ)
∑
hi∈S′

P (hi avail)χ(hk+1 �η hi)]

P (hj avail)P (hj in sn)v(sn) ≥ v(sn)P (hj avail)P (hk+1 in sn)

We shall show that under the theorem’s assumptions, none
of these inequalities hold for h1, and therefore the general
inequality (Lemma 9) does not hold.

Note that for each inequality we can simply ignore v(s`)
(1 ≤ ` ≤ n), since they appear on both sides of the inequal-
ity. The assumption of theorem is that first inequality does
not hold, i.e.,

P (h1 avail)P (h1 in s1) < P (h1 avail)P (hk+1 in s1)+∑
η∈H�|

hk+1 in s1

P (η|Dφ,σ)
∑
hi∈S′

P (hi avail)χ(hk+1 �η hi)

As shown in Lemma 4, for any 1 < ` ≤ k the probability
of h1 being in any spot s` is monotonically decreasing with
`, while the probability of hk+1 being in spot s` is monoton-
ically increasing with `. Hence, P (h1 avail)P (h1 in s1) >
P (h1 avail)P (h1 in s`). Similarly, P (h1 avail)P (hk+1 in s1) <
P (h1 avail)P (hk+1 in s`). We analogously see that:∑

η∈H�|
hk+1 in s1

P (η|Dφ,σ)
∑
hi∈S′

P (hi avail)χ(hk+1 �η hi) <

∑
η∈H�|

hk+1 in s`

P (η|Dφ,σ)
∑
hi∈S′

P (hi avail)χ(hk+1 �η hi)

Simply put, the LHS gets smaller, while the RHS increases.
Hence, for 1 ≤ ` ≤ k:

P (h1 avail)P (h1 in s`) < P (h1 avail)P (hk+1 in s`)+∑
η∈H�|

hk+1 in s`

P (η|Dφ,σ)
∑
hi∈S′

P (hi avail)χ(hk+1 �η hi)

By Lemma 4, for any ` > k, P (h1 in s`) < P (hk+1 in s`)
which gives us:

P (h1 avail)P (h1 in s`) < P (h1 avail)P (hk+1 in s`) =⇒
P (h1 avail)P (h1 in s`) < P (h1 avail)P (hk+1 in s`)+∑

η∈H�|
hk+1 in s`

P (η|Dφ,σ)
∑
hi∈S′

P (hi avail)χ(hk+1 �η hi)

Starting with the assumption that assortative interview-
ing does not hold for plurality, we show that none of the
inequalities above hold for any slot s`, and therefore that
the condition in Lemma 9 does not hold for j = h1 for any
valuation function.

Theorem 21. Given an interviewing budget of k > 3 in-
terviews, there exists 0 < ε < 1 s.t. for any scoring function
v no assortative interviewing forms an equilibrium for dis-
persion parameter φ < ε.

Proof. Thanks to Theorem 20, it is enough for us to
shown there is no assortative equilibrium under plurality
(and that h1 violates Lemma 9’s condition). We again be-
gin with the simplification from Lemma 14: P (hj avail) ≥
φk−j+1. Thanks to Lemma 19, we know P (hj avail) is of
the form:

P (hj avail) =
X(k)

Zk−1
φ
∑k−j
i=1 i +

X1(k)

Zk−1
φ1+

∑k−j
i=1 i + . . .+

X`(k)

Zk−1
φ(k

∑k−j
i=1 i)−1 +

1

Zk−1
φk

∑k−j
i=1 i (9)

(X(k), X1(k), . . . , X`(k) are functions that calculate the num-
ber of different sets of possible preference orders for r1, . . . , rk,

with each set being of probability φ
∑k−j
i=1 i for X(k), φ1+

∑k−j
i=1 i for X1(k),

etc.)
When φ → 0, Zk−1 → 1, and Equations 9 becomes

P (hj avail) → X(k)φ
∑k−j
i=1 i. In particular, there is ε′, such

that P (h1 avail) < X(k)φ(
∑k−j
i=1 i)−1, and there is ε = min(ε′, 1

X(k)
)

such that for φ < ε, for k > 3:

φk ≥ φ(
∑k−j
i=1 i)−2 > X(k)φ(

∑k−j
i=1 i)−1 > P (h1 avail)

Contradicting our condition (Equation 6).

Moreover, we show that for k = 4, assortative interviewing
is never an equilibrium.

Theorem 22. Given an interviewing budget of k = 4 in-
terviews and any scoring function, assortative interviewing
is not an equilibrium for any dispersion parameter φ.

Proof. We begin by instantiating the plurality valuation
function. By Theorem 20, if assortative interviewing is not
an equilibrium for plurality, it is never an equilibrium for any
scoring rule. As noted before Eq. 6 is tight, so if we compute
the marginal contribution from some h∗ ∈ {h1, h2, h3, h4},
and the contribution from h∗ is strictly less than the con-
tribution from h5 for any φ, assortative interviewing is not
an equilibrium for k = 4 and plurality. We find that the
contribution from h1 is less than the marginal contribution
from h4.

To calculate P (h1 avail), we simply iterate over all 6 pos-
sible allocations for r1, r2, r3 such that h1 is not taken, and
directly calculate the probabilities of each ranking profile for
r1, r2, r3 that allows that to happen. In the interest of clar-
ity, we only provide a symbolic representation. Let A be the
set of all permutations of h2, h3, h4, so that (a1, a2, a3) ∈ A.

P (h1 avail) =
∑

(a1,a2,a3)∈A
P (µ(r1) = a1)P (µ(r2) = a2|µ(r1) = a1)

P (µ(r3) = a3|µ(r1) = a1, µ(r2) = a2)

We instantiate the above equation using the probabilities
of each potential match, and use numerical methods to show
the function P (h1 avail) − φ4 is negative for any φ in 0 <
φ ≤ 1.



7. DISCUSSION
We investigate equilibria for interviewing (for example,

between residents and hospitals) with a limited budget when
a master ranked list (say, of residents) is known. We provide
a generic payoff function, that is indifferent to participants’
interviewing budgets, preference distributions, and scoring
functions. We show that a pure strategy interviewing equi-
librium always exists.

We then focus on this game for different scoring rules
(Borda, plurality and exponential scoring rules), when res-
idents’ preferences are independently drawn from the same
Mallows distribution. We find evidence that, for all scor-
ing rules investigated, interviewing budgets typically seen
in real-world markets do not admit assortative interviewing
equilibria, even though this is a strategy frequently played in
these markets. We do find that this is an equilibrium strat-
egy for small interviewing budgets, when residents’ prefer-
ences are sufficiently “similar” (i.e., low dispersion). More-
over, this assortative equilibrium strategy is a naturally aris-
ing equilibrium in which the maximum number of residents
are matched; namely, the residents interview assortatively
in tiers, forming a bipartite graph interviewing graph struc-
ture with n/k disconnected complete components. A similar
bipartite graph interviewing structure is present in the work
of Lee and Schwarz [16]. However, this structure naturally
arises in our model, and we characterize a very different pref-
erence space than the Lee and Schwarz paper, which investi-
gates the impartial culture model (i.e., a Mallows model with
φ = 1, or uniform distribution). We also provide an equilib-
rium for impartial culture in markets with master lists.

We hypothesize the difference in behavior seen in real-
world markets and the equilibria shown here could result
from a variety of factors. First, we only investigate assor-
tative interviewing under a φ-Mallows model. As discussed
in Section 3.3, while under some circumstances the Mallows
model is viewed as a realistic model, it is possible partici-
pants’ preferences in these markets are not sufficiently de-
scribed by such a model. Another critical modeling assump-
tion in this work is that of master lists, though assortative
interviewing behavior is seen both in matching markets with
and without master lists.

We also assume perfectly rational actors. Both prospect
theory and quantal response equilibria could explain the dif-
ference in real-world behavior and the equilibria shown here.
Individuals tend to misjudge probabilities, overestimating
small probabilities, and underestimating near-certainties. (Per-
haps leading them to believe assortative interviewing is a
best response).

We hypothesize that, like in decentralized matching mar-
kets, the structure of the interviewing equilibria will contain
both “reach” and “safety” schools, where participants diver-
sify their interviewing portfolio to get both the benefit of
a desirable, unlikely option, and a likely, but less desirable
option. We find some evidence of this equilibrium in small
markets with Borda valuations. Figure 1, depicts a market
with 4 hospitals, 4 residents, and 2 interviews (n = 4, k = 2)
and shows the explicit trade-off between high-value unlikely
alternatives, and more choice over alternatives. The figure
shows the exact payoff for each interviewing set, for given
dispersion φ. As φ increases, we explicitly see the trade-
off between more choice, and a better expected payoff value
for individual alternatives. For sufficiently large φ, choice
dominates individual expectations so that for r2, interview-
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Figure 1: r2’s expected payoff for interviewing with various
interviewing sets, as φ goes from 0 to 1, n = 4.

ing {h3, h4} dominates interviewing with any other set. For
small φ, interviewing with {h1, h2} dominates interviewing
with any other set.Interestingly, for φ ∈ [0.5, 0.6], r2’s best
option is to split the difference, and interview with one hos-
pital (h3) he is guaranteed to get and one hospital (h2) that
will be available with sufficiently high probability, and has
a higher expected value. This choice available to r2 results
in some of the “reach” behavior we see in college admissions
markets; r3’s best response now is to interview with h1, h4

(i.e., a “reach” choice, and a “safe” bet). We hypothesize
that this “reach” and “safety” behavior is not only present
for larger φ in markets with small interviewing budgets, but
also in markets with large interviewing budgets.

We hypothesize that results similar to the ones presented
in this paper hold for different scoring functions and prefer-
ence distributions (e.g., Plackett-Luce). Furthermore, the
results presented here only investigate one-to-one match-
ing markets. We believe that most of our results will di-
rectly hold for many-to-one markets where each hospital h
has known capacity qh. Another interesting future direction
would be to relax the assumption that interviewing with any
hospital has identical cost. In this regard, we wish to inves-
tigate equilibria when each resident has a known budget k,
and each resident r has some known cost cr(h) for interview-
ing with hospital h; residents must then choose an interview-
ing set S s.t.

∑
h∈S cr(h) ≤ k. Perhaps the most important

direction for future work is relaxing the master list assump-
tion; we hypothesize that similar equilibria arise if prefer-
ences on both sides of the market are distributed according
to a Mallows model with low dispersion. We also believe this
work could lead to interesting questions in mechanism de-
sign, where the mechanism is a joint interviewing/matching
mechanism, with a limited budget for interviews explicitly
incorporated into the mechanism.
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