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ABSTRACT
Probabilistic conditional preference networks (PCP-nets) are a gen-
eralization of CP-nets for compactly representing preferences over
multi-attribute domains. We introduce the notion of a loss func-
tion whose inputs are a CP-net and an outcome. We focus on the
optimal decision-making problem for acyclic and cyclic CP-nets
and PCP-nets. Our motivations are three-fold: (1) our framework
naturally extends to allow reasoning on cyclic CP-nets and PCP-
nets for full generality, (2) in the multi-agent setting, we place no
restriction on agents’ preferences structure and voting rules under
our framework have desirable axiomatic properties, (3) we gener-
alize several previous approaches to finding the optimum outcome
in individual and multi-agent contexts. We characterize the compu-
tational complexity of computing the loss of a given outcome and
computing the outcomes with minimum loss for three natural loss
functions: 0-1 loss, neighborhood loss, and global loss. While the
optimal decision is NP-hard to compute for many cases, we give a
polynomial-time algorithm for computing the optimal decision for
tree-structured PCP-nets and profiles of CP-net preferences with a
shared dependency structure, w.r.t. neighborhood loss function.

1. INTRODUCTION
Many decision-making problems involve choosing an optimal

outcome from a multi-attribute domain where the alternatives are
characterized by p ≥ 1 variables and each variable corresponds
to an attribute of the outcome. In combinatorial voting there are
p issues, and the alternatives correspond to the decisions made on
each issue. For example, a dinner menu can be characterized by
two variables: the main dish M and the wine W. The main dish
can be either beef (Mb) or fish (Mf ) and the wine can be either
white wine (Ww) or red wine (Wr). We want to make an optimal
(joint) decision for an agent or a group of agents with preferences
over the alternatives. However, since the number of outcomes in a
multi-attribute domain is exponentially large, it is impractical for
the agents to express preferences as a full ranking over all out-
comes.

A popular practical solution is to use a compact preference lan-
guage to represent agents’ preferences. Perhaps the most com-
monly used language for agents to represent their preferences over
multi-attribute domains are CP-nets (conditional preference net-
works) [2]. In a CP-net, an agent can specify her local preferences
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over any attribute given the values of some other attributes (called
its parents). Such preferences can arise from, and be decomposed
into ceteris paribus statements of the form: “I prefer red wine to
white wine, ceteris paribus, given that meat is served as the main
dish.” The dependency graph of a CP-net is a directed graph where
the vertices are the variables and each variable has incoming edges
from its parents.

For a single agent whose preferences are represented by a CP-
net, a natural optimization objective is to identify undominated out-
comes [3]. Informally, an outcome is undominated if no other out-
come is preferred over it. The problem of computing undominated
outcomes is well studied in the CP-net literature. For acyclic CP-
nets (CP-nets with acyclic dependency graphs), an undominated
outcome always exists and is unique [2]. However, when we allow
cyclic dependencies, undominated outcomes can be hard to com-
pute [3, 9].

Recently, probabilistic conditional preference networks (PCP-
nets) have been introduced as a natural generalization of CP-nets [1,
7]. In a PCP-net, for any variable X and any valuation of its par-
ents, there is a probability distribution over all rankings over X’s
value domain. A PCP-net can be used to represent a single agent’s
uncertain preferences over a set of CP-nets, or a preference profile
of multiple CP-nets [8]. Given an acyclic PCP-net, [7] provides a
polynomial-time algorithm for computing the outcome that is un-
dominated with the highest probability. Despite this promising first
step in decision making with PCP-nets, the optimal decision mak-
ing problem for PCP-nets remains largely open. In particular, is
there any other sensible and more quantitative optimality criterion
beyond “being undominated” that we may consider for CP-nets as
well as PCP-nets? If so, how can we compute them?

In the combinatorial voting setting, we are given a profile, a col-
lection of multiple agents’ individual CP-net preferences or votes.
Several approaches [11, 20, 18, 14, 19, 15, 5, 12] have been pro-
posed to aggregate preferences in this setting by extending standard
voting rules and axiomatic properties. Additionally, [8] represents
the profile with a single PCP-net, and [17] proposes mCP-nets to
deal with partial CP-nets where agents may have preference over
only a subset of the issues. However, much of the existing work
focuses on certain special cases with rather severe restrictions on
agents’ preferences such as allowing only profiles with acyclic CP-
nets, and dependencies that are compatible with a common order
on the issues (O-legality). We design a new class of voting rules
characterized by a loss function which takes as input any profile of
CP-net preferences and outputs a set of loss minimizing outcomes.

1.1 Our Contributions
We take a decision-theoretic approach by modeling the optimal-

ity of an outcome by a loss function, whose inputs are an out-
come (an assignment of values to attributes) and a single (acyclic



Table 1: Complexity of L-LOSS w.r.t. acyclic and cyclic CP-nets. The
complexity remains unchanged for the case of acyclic and cyclic PCP-nets.

Loss fn. Acyclic Cyclic
L0−1 P (trivial) P (Prop. 1)
LN P (Prop. 2)
LG coNP-hard (Thm. 2) coNP-hard

Table 2: Complexity of L-OPTDECISION w.r.t. acyclic and cyclic CP-nets
and PCP-nets.

Loss fn. Acyclic Cyclic
L0−1

P [2] NP-complete (Prop. 3)
LN

LG P (Prop. 4)

(a) CP-nets

Loss fn. Acyclic Cyclic

L0−1
NP-complete,
P for trees [7] NP-complete [7]

LN
NP-hard (Thm. 3),
P for trees (Thm. 4) NP-hard (Thm. 3)

LG coNP-hard (Thm. 5)

(b) PCP-nets

or cyclic) CP-net. In this paper we focus on multi-attribute do-
mains where all variables are binary (although we emphasize that
all our results also apply to multi-valued variables), and the fol-
lowing three natural loss functions for an outcome ~d and a CP-net
C.

1. 0-1 loss function (L0−1): the loss is 1 if ~d is dominated in
C, and is 0 otherwise. This loss function corresponds to the
most probable optimal outcome studied by [7].

2. Neighborhood loss (LN ): the loss is the number of neighbors
that dominate ~d. A neighbor of ~d differs from ~d on only one
attribute. This loss function corresponds to local Condorcet
winner [5].

3. Global loss (LG): the loss is the total number of outcomes
that dominate ~d.

These loss functions can be naturally extended to evaluate the loss
of an outcome in PCP-nets and profiles of CP-nets. We then con-
sider the problem of computing an optimal decision in a loss mini-
mization framework.

Given a loss function L, an outcome ~d, a number k, and a CP-
net (or PCP-net) C, in the L-LOSS problem we are asked whether
the loss of ~d in C is no more than k. Given a loss function L, a
number k, and a CP-net (or PCP-net) C, in the L-OPTDECISION
problem we are asked whether there exists an outcome ~d whose
loss is no more than k. Given a loss function L, a number k, and
a profile P of CP-nets, in the L-OPTJOINTDECISION problem
we are asked whether there exists an outcome ~d whose loss for
the entire profile P is no more than k. The results for L-LOSS
are summarized in Table 1. Our main results on the problems L-
OPTDECISION, and L-OPTJOINTDECISION are shown in Table 2
and Table 3 respectively.

One might be tempted to believe that PCP-nets are so compli-
cated that all problems are hard to compute. This is not true. As
we can see in Table 1, computing LOSS w.r.t. L0−1 and LN can be
done in polynomial time for PCP-nets. Another false belief could
be that for the same loss function, LOSS is easier than OPTDE-

Table 3: Complexity of L-OPTJOINTDECISION w.r.t. profiles of acyclic
and cyclic CP-nets.

Loss fn. Acyclic Cyclic
L0−1 P (Thm. 6) NP-complete (Thm. 6)
LN NP-complete (Thm. 6),

P for shared tree-structured dependency graph.
(Thm. 7)

LG coNP-hard (Thm. 8)

CISION (or vice versa). Neither is true by comparing Table 2(a)
and Table 1. LG-LOSS is coNP-hard but LG-OPTDECISION is in
P for acyclic CP-nets. LN -LOSS is in P but LN -OPTDECISION
is NP-complete for cyclic CP-nets. While it is hard to compute
the optimal outcomes w.r.t. all three loss functions (Table 2), for
tree-structured PCP-nets, we have a polynomial-time algorithm to
compute the optimal outcome (Theorem 4). Similarly, while it is,
hard to compute the optimal outcomes w.r.t. L0−1 for acyclic PCP-
nets, a simple polynomial time algorithm allows us to compute the
optimal outcome for a profile of acyclic CP-nets.

Finally, we show that every voting rule under our framework sat-
isfies anonymity, category-wise neutrality, consistency and weak
monotonicity.

1.2 RELATED WORK AND DISCUSSIONS
Since PCP-nets can be used to represent the preferences of a

group of agents, our loss-minimization framework can naturally
be used as a solution to group decision-making as done by [7] for
L0−1. However, among all three loss functions considered in this
paper, only L0−1 has been studied for PCP-nets. All our computa-
tional results about LN and LG for PCP-nets are new.

Our loss-minimization framework is also related to other re-
cent research agenda in aggregating CP-nets in multi-attribute do-
mains [17, 11, 20, 18, 13, 14, 19, 15, 5, 6, 12, 4]. The main chal-
lenge is in the case where agents’ preferences are represented by
cyclic CP-nets, or there does not exist a common ordering over
attributes that is compatible with all agents’ CP-nets. In these
cases even the optimality of an outcome is not clear. We handle
cyclic CP-nets differently by introducing loss functions that work
for cyclic CP-nets and PCP-nets. At a high level, our approach is
similar to the idea of applying a positional scoring rule to profiles of
LP-trees [12]. The difference is that an LP-tree represents a linear
order over a multi-attribute domain but CP-nets generally represent
a partial order. Therefore, positional scoring rules are not directly
applicable to profiles of CP-nets.

2. PRELIMINARIES
Let I = {X1, ..., Xp} be a finite set of p variables with finite

domains D(Xi). Let L(D(Xi)) denote the set of all linear orders
over D(Xi). For ease of presentation, we will assume that all vari-
ables are binary in this paper. An assignment (or outcome) ~d is a
vector in Πi≤pD(Xi). We use either dXi or di to denote the value
of Xi in ~d, and d−i to denote the values of all other variables. For
any subset of variables S ⊆ I , we let D(S) = ΠXi∈SD(Xi), and
D(−S) = ΠXi∈I\SD(Xi). We use ~dS to denote the assignment
to the variables in S.

DEFINITION 1. [2] A CP-net C over the set of variables I is
given by two components (i) a directed graph G = (I, E) called
the dependency graph, and (ii) for each variable Xi, there is a
conditional preference table CPT (Xi) that contains a linear or-
der �i

C,~u over D(Xi) for each valuation ~u of the parents of Xi



(denoted Pa(Xi)) in G.
When G is (a)cyclic we say that C is a (a)cyclic CP-net.

The partial order �C induced by a CP-net C over the set
of all possible assignments Πi≤pD(Xi) is the transitive closure
of {(ai, ~u, ~z) � (bi, ~u, ~z)} : i ≤ p; ai, bi ∈ D(Xi); ~u ∈
D(Pa(Xi)); ~z ∈ D(−(Pa(Xi) ∪ {Xi}))}. A CP-net is said to
be consistent if �C is asymmetric. Acyclic CP-nets are consistent
but cyclic CP-nets are not necessarily consistent.

DEFINITION 2 (WEAK AND STRICT DOMINANCE). An as-
signment ~a weakly dominates~b if ~a �C

~b. An assignment ~a strictly
dominates~b if ~a �C

~b and~b �C ~a.

Dominance relations can also be described by improving flip dy-
namics [2]. If ~d′ differs from ~d in the value of exactly one variable
Xi (i.e. d′i 6= di, d′−i = d−i) and d′i �i

C,~u di where ~u = ~dPa(Xi),
then the change from ~d to ~d′ via changing the value of Xi is an im-
proving flip, and ~d ≺C

~d′. For any pair of assignments ~a,~b where
~a �C

~b, there exists a sequence of such improving flips starting
from ~a by which we obtain ~b. If ~a �C

~b, then there is no such se-
quence of improving flips from~a to~b. In the case of cyclic CP-nets,
it is possible to simultaneously have ~a �C

~b and~b �C ~a and have
a corresponding sequence of improving flips in either direction.

M
Main dish preference

Mb �Mf

W

Main dish M Wine preference
Mb Wr �Ww

Mf Ww �Wr

MbWr MbWw

MfWr MfWw

Figure 1: A CP-net representing preferences for dinner consisting
of a main dish (M) and wine (W). The available choices are: For
the main course, either beef (Mb) or fish (Mf ), and for wine, either
red wine (Wr) or white wine (Ww).

EXAMPLE 1. Figure 1 shows an agent’s preferences over din-
ner represented as a CP-net and its hypercube representation [5].
In the hypercube representation there is an edge between every
pair of neighboring assignments representing the agent’s prefer-
ences. For example, the edge MbWr → MbWw means that
MbWr � MbWw, and that we can obtain MbWr from MbWw

by an improving flip. Serving beef along with red wine (i.e. the as-
signment MbWr) is the optimal decision and it strictly dominates
every other configuration.

DEFINITION 3. A PCP-net [1, 7] Q over the set of variables
I is given by (i) a directed graph G = (I, E), and (ii) for each
variable Xi, there is a probabilistic conditional preference table
PCPT (Xi) that contains a probability distribution f i

Q,~u over
L(D(Xi)) for each valuation ~u of the parents of Xi in G.

A CP-net C with dependency graph G = (V,E′) is compatible
with a PCP-netQwith a dependency graphG = (V,E) ifE′ ⊆ E.
Any PCP-net Q represents a probability distribution over all CP-
nets that are compatible withQ. For any CP-netC compatible with
a PCP-netQ, the probability ofC, denoted by fQ(C), is calculated
by multiplying the probabilities of all local preferences in C by
looking up corresponding entries in PCPTs in Q. Formally,

fQ(C) =
∏

Xi

∏
~u∈D(PaQ(Xi))

f i
Q,~u(�i

C,~u)

EXAMPLE 2. Figure 2 illustrates a PCP-net Q and a CP-net
C that is compatible with Q. We have fQ(C) = 0.3 × 0.6 ×
0.3. The first 0.3 is the probability of Mf � Mb in C; the 0.6 is
the probability of Wr � Ww given Mb in C; the last 0.3 is the
probability of Wr �Ww given Mb in C.

M

M pref. Pr.
Mb �Mf 0.7
Mf �Mb 0.3

W

M W pref. Pr.
Mb Wr �Ww 0.6
Mb Ww �Wr 0.4
Mf Wr �Ww 0.3
Mf Ww �Wr 0.7

(Q)

M
M pref.
Mf �Mb

W

M W pref.
Mb Wr �Ww

Mf Wr �Ww

(C)

Figure 2: PCP-net Q and a CP-net C it induces.

A profile P = (P1, ..., Pn) or n agents’ CP-net preferences over
a set of variables I is a collection of CP-nets Pi, 1 ≤ i ≤ n over
I , one for each agent i representing her vote. A profile P is said
to be O-legal if there is some linear order O over the variables I
such that for every CP-net Pi, every variable Xi, it holds that if
Xj ∈ Pa(Xi), thenXj �O Xi i.e that every parent ofXi appears
before Xi in O. A voting rule r is a function that takes as input a
profile and outputs a set of outcomes.

2.1 Loss Functions
In this paper we will focus on three loss functions. Each loss

function L takes a CP-net C and an assignment ~d as inputs and
outputs a real number L(C, ~d).

DEFINITION 4. The 0-1 loss function is defined as

L0−1(C, ~d) =

{
1 if there exists ~d′ such that ~d′ �C

~d,

0 otherwise

That is, the 0-1 loss function takes the value 0 if and only if ~d is not
weakly dominated by any other assignment in C.

DEFINITION 5. The neighborhood loss function is defined as
LN (C, ~d) = |{~d′ : ∃i : d′i �C di and d′−i = d−i}|.

That is, the neighborhood loss of ~d in C is the number of ~d’s neigh-
bors that can be obtained by a single improving flip from ~d in C.

DEFINITION 6. The global loss function is defined as
LG(C, ~d) = |{~d′ : ~d′ �C

~d, and ~d �C
~d′|.

That is, the global loss of ~d in C is the total number of assignments
that strictly dominate ~d in C.

For example, in the CP-net of Figure 1, MfWr has a neighbor-
hood loss of 2, and a global loss of 3. MbWr has a global loss of 0
because no assignment strictly dominates it.

All loss functions can be naturally extended to PCP-nets by com-
puting the expected loss of a given assignment w.r.t. the distribution
fQ over CP-nets represented by the given PCP-netQ. Similarly, the
loss functions extend to a profile of CP-net preferences by comput-
ing the sum total of the loss of a given assignment w.r.t. each of the
CP-nets in the profile.



3. COMPUTING THE LOSS OF ASSIGN-
MENTS

We now formally define the decision problem of computing the
loss of an assignment w.r.t. a loss function.

DEFINITION 7 (L-LOSS). Given a PCP-net Q, a loss func-
tion L, a decision ~d, and a number k ∈ R, in L-LOSS we are asked
to compute whether L(Q, ~d) ≤ k.

OBSERVATION 1. Because CP-nets are a special case of PCP-
nets, any hardness results for CP-nets immediately extend to the
case of PCP-nets. Conversely, if a problem is easy for PCP-nets
then it is also easy for CP-nets.

We find that L0−1-LOSS and LN -LOSS are easy for even cyclic
PCP-nets. By our previous observation, this also extends to acyclic
PCP-nets and both acyclic and cyclic CP-nets.

PROPOSITION 1. L0−1-LOSS is in P for possibly cyclic PCP-
nets.

We note that given a cyclic PCP-netQ, the 0-1 loss of ~d in a CP-net
C that is compatible with Q is 1 if and only if ~d is less preferred
than one of its neighbors. Therefore, we have

L0−1(Q, ~d) = 1−
p∏

i=1

f i
Q,dPa(Xi)

(di � d̄i),

where d̄i is the complement of di, f i
Q,dPa(Xi)

is the PCPT (Xi)

given that the parents of Xi take their values as in ~d.

PROPOSITION 2. LN -LOSS is in P for possibly cyclic PCP-
nets.

PROOF. It is not hard to check that LN (Q, ~d) =∑p
i=1 f

i
Q,dPa(Xi)

(d̄i � di).

THEOREM 1. LG-LOSS is PSPACE-complete for inconsistent,
cyclic CP-nets.

PROOF. We show a reduction from the PSPACE-complete prob-
lem WEAKLY NON-DOMINATED OUTCOME [9], where we
are given a CP-net C and an assignment ~d, and we are asked
whether ~d is weakly non-dominated. An assignment is weakly non-
dominated if there is no ~d′ �C

~d. It follows from the definitions
that ~d is weakly non-dominated if and only if LG(C, ~d) = 0, and
not weakly non-dominated if and only if LG(C, ~d) ≥ 1. This cor-
responds to a reduction to LG-LOSS where k = 0.

THEOREM 2. LG-LOSS is coNP-hard for acyclic CP-nets but
in PSPACE.

PROOF. We give a polynomial time reduction from 3-SAT to
the complement of LG-LOSS, denoted by LG-LOSS, which is de-
fined as: Given a CP-net C, a decision ~d, and a number k ∈ R,
is LG(C, ~d) > k. Our construction is inspired by the one used
in [2] to prove the hardness of dominance testing in acyclic graphs.
In an instance of 3-SAT we are given a Boolean formula F =
C1∧...∧Cn in 3-CNF over a set of Boolean variables {x1, ..., xm}.
We are asked whether there exists a truth assignment to the vari-
ables such thatF is satisfied. We construct an instance ofLG-LOSS
(see Figure 3), beginning with the construction of a CP-net C as
follows:
• I = {V1, V̄1, ..., Vm, V̄m} ∪ {C1, ..., Cn} ∪ {D0, D1, ...,
D2m+n} is a set of binary variables. Each Vi, V̄i corresponds to

C1

...

... Cn

Vn1
... V̄n3

D0

Cn value pref.
0 0 � 1
1 1 � 0

D1
... D2m+n

D0 value pref.
0 0 � 1
1 1 � 0

Figure 3: The CP-net used in the proof of Theorem 2.

a Boolean variable xi involved in the 3-SAT instance. Each Ci

corresponds to a clause Ci.
• Let xi1, xi2, xi3 be the variables involved in the clause Ci.
Then, (a) for all Vi, V̄i ∈ I , we let Pa(Vi) = Pa(V̄i) = ∅,
(b) Pa(Ci) = {Vi1, V̄i1, Vi2, V̄i2, Vi3, V̄i3}, and importantly,
(c) for all 2 ≤ i ≤ n, Pa(Ci) = Pa(Ci) ∪ {Ci−1}.
• For all 1 ≤ i ≤ 2m + n, we let Pa(D0) = Cn and Pa(Di) =
{D0}.

We populate the associated CP-tables as follows:
• The CPTs for all Vi, V̄i are 1 � 0.
• For all Ci, we add the entry 1 � 0 for every assignment to
Pa(Ci) where there exists a k ≤ 3 such that all the following con-
ditions are satisfied: (1) Vik 6=V̄ik , (2) Vik = 1 if xik is in clause
j, OR Vik = 0 if ¬xik is in Cj , and (3) Ci−1 = 1 if i > 1. Add
entry 0 � 1 for all remaining assignments.
• For D0, 1 � 0 if Cn = 1, 0 � 1 otherwise.
• For all i ≤ 2m + n, we let the CPT (Di) be 1 � 0 if D0 = 1,
and 0 � 1 otherwise.

Finally, we let ~d = ~0 and k = 22m+n.

CLAIM 1. F is satisfiable if and only if LG(C,~0) > 22m+n.

PROOF. Intuitively, starting from~0,D0 acts as a switch that can
only be flipped on when the variables Vi, V̄i are set in a way so that
the corresponding assignment to xi’s satisfies F , and only when
all the clause variables Ci have flipped (sequentially) to 1. Once
D0 flips to 1, the variables D1≤i≤2m+n may flip to 1 indepen-
dently. Together, they account for a loss of 22m+n. The formal
proof works as follows.
⇒ Let φ be an assignment that satisfies F . Then, by construc-

tion, there exists a sequence of improving flips starting from ~0 as
follows: For i = 1, ...,m, if φi = 1, flip Vi to 1, otherwise, flip V̄i

to 1. By construction, we can flip C1 to 1 and subsequently, each
C2, ..., Cn to 1 in this order. This enables the flip of D0 to 1, and
enables D1, ..., D2m+n to be flipped to 1 in any order. Together
with the flip of D0 to 1, and Cn to 1, there are at least 22m+n

assignments that are preferred over ~0.
⇐ Suppose F be unsatisfiable. For sake of contradiction, sup-

pose that ~0 has a global loss LG(C,~0) > 22m+n. There are at
most 22m+n − 1 assignments that involve changes in the values
of 2m + n variables {Vi, V̄i}i≤m ∪ {Ci}i≤n. For the inequal-
ity to hold there must be a sequence of improving flips to an as-
signment where a variable Di has value 1. Then there must be
a sequence S from ~0 to an assignment ~d′ where D0 = 1, and
C1, ..., Cn must have already been flipped to 1 along S in turn.
Consider the construction of an assignment φ to the Boolean vari-
ables as follows. By construction, ∀Ci, there must exist an as-
signment in S obtained by flipping Ci from 0 to 1. When the flip
occurs, there must exist some j : Vj 6= V̄j , Vj , V̄j ∈ Pa(Ci). If
Vj = 1, V̄j = 0, Vj , V̄j ∈ Pa(Ci), set φj = 1. Otherwise, if
Vj = 0, V̄j = 1, set φj = 0. Simultaneously, clause Ci must be
satisfied. Once any of the variables Vi, V̄i is set to 1 in the sequence,



it can never flip back to 0 in S subsequently (doing so would not be
an improving flip). There never exists a pair of assignments e, e′ in
S such that Vi = 1, V̄i = 0 in e but Vi = 0, V̄i = 1 in e′. There-
fore, when each Ci is flipped to 1 in S, the values of the variables
Vj , V̄j ∈ Pa(Ci) are consistent with the assignment of the corre-
sponding variables xj in φ that satisfies clause Ci. If we can flip
Cn to 1 in this way, then φ is a satisfying assignment.

It is easy to see that the problem is in PSPACE. We conjecture
that the problem is PSPACE-complete.

4. COMPUTING OPTIMAL DECISIONS
FOR PCP-NETS

We define the decision problem of computing optimal assign-
ments L-OPTDECISION as follows.

DEFINITION 8 (L-OPTDECISION). Given a PCP-net Q, a
loss function L, and a number k ∈ R, does there exist an assign-
ment ~d such that L(Q, ~d) ≤ k?

PROPOSITION 3. L0−1-OPTDECISION and LN -
OPTDECISION are NP-complete for cyclic CP-nets.

PROOF. We give a reduction from the problem EXISTENCE
OF NON-DOMINATED OUTCOME [9]. An outcome is non-
dominated if it uniquely belongs to a maximal dominance class (i.e.
there is no way to improve from ~d to any other assignment). It fol-
lows from the definition that an assignment ~d is a non-dominated
outcome w.r.t. a CP-net C if and only if L0−1(C, ~d) = 0 (equiva-
lently, LN (C, ~d) = 0). The problem of deciding the existence of a
non-dominated outcome reduces to the checking if there is a deci-
sion ~d with L0−1(C, ~d) = 0 (equivalently, LN (C, ~d) = 0).

PROPOSITION 4. LG-OPTDECISION can be solved in constant
time for cyclic CP-nets.

PROOF. For any CP-net C, a weakly non-dominated outcome ~d
always exists such that LG(C, ~d) = 0.

PROPOSITION 5. L0−1-OPTDECISION is in P for PCP-nets Q
with a tree structured dependency graph but NP-complete in gen-
eral for acyclic dependency graphs.

PROOF. arg min~d L0−1(Q, ~d) = arg min~d(1 −
∏n

i=1

f i
Q,dPa(Xi)

(d̄i � di)) = 1 − arg max~d(
∏n

i=1 f
i
Q,dPa(Xi)

(d̄i �
di)). This problem is equivalent to finding most probable expla-
nation (MPE) for a Bayesian network [7]. This problem is NP-
complete in general for acyclic graphs but is in P for tree structured
Bayesian networks [10].

THEOREM 3. LN -OPTDECISION is NP-hard for acyclic PCP-
nets.

PROOF. We give a reduction from 3-SAT. Given a 3-SAT in-
stance F = C1 ∧ ... ∧ Cn, we consider the following construction
of an instance of LN -OPTDECISION:
• I = {Vi, V̄i}1≤i≤m ∪ {Ci}1≤i≤n ∪ {D} is a set of binary vari-
ables. Each Vi, V̄i corresponds to a Boolean variable xi involved
in the 3-SAT instance. Each Ci corresponds to the clause Ci in F .
• For allCi ∈ I , let xi1, xi2, xi3 be the variables involved in clause
Ci. Then, (a) for all Vi, V̄i ∈ I , we let Pa(Vi) = Pa(V̄i) = ∅,
(b) Pa(Ci) = {Vi1, ..., V̄i3}, and importantly, (c) for all
2 ≤ i ≤ n, we let Pa(Ci) = Pa(Ci) ∪ {Ci−1}.
• Pa(D) = Cn.

We now define the PCP-tables.
• For all Vi, V̄i, 1 � 0 (whose probability is 0.5).
• For all Ci, we add entry 1 � 0 (whose probability is 1) for every
assignment to Pa(Ci) that satisfies all the following conditions:
(1) Vik 6=V̄ik , (2) Vik = 1 if xik in clause j, OR Vik = 0 if ¬xik
in Cj , and (3) Ci−1 = 1 if i > 1. Add entry 0 � 1 (whose
probability is 1) for all assignments to Pa(Ci) that do not satisfy
all conditions.
• ForD: ifCn = 1, then we add an entry 1 � 0 (whose probability
is 1). Otherwise, add an entry 0 � 1 (whose probability is 0.5).

C1

...

... Cn

Vn1
... V̄n3 1 � 0 with probability 0.5

D

D0 value pref.
0 0 � 1 with probability 0.5
1 1 � 0

Figure 4: Construction of PCP-net from 3-SAT instance for Theo-
rem 3.

We show thatF is satisfiable if and only if there exists an assign-
ment ~d such that LN (Q, ~d) ≤ n.
⇒ Let φ be an assignment to the Boolean variables that satisfies
F . Let ~d be the assignment where if φi = 1, dVi = 1, dV̄i

= 0,
otherwise, dVi = 0, dV̄i

= 1, all dCi = 1, and dD = 1. Now,
consider any CP-net C induced by Q. The only variables that can
change value in a single improving flip are the variables Vi, V̄i. The
total expected neighborhood loss of ~d is at most 0.5 · 2n.
⇐ Let F be unsatisfiable, and for the sake of contradiction, let ~d

be an assignment with loss LN (Q, ~d) ≤ n. Every assignment has
neighborhood loss of at least 0.5 · 2n contributed by the variables
Vi, V̄i. If dCn = 0, then there is an improving flip in the value of
D with probability 0.5. If dCn = 1, and dCi = 1 for all i < n,
then either there is an improving flip in the value of some Ci or F
is satisfiable. If there is a dCi = 0, i < n, then there must exist a
pair Cj , Cj+1, j < n such that dCj = 0, dCj+1 = 1. Again, there
is a non zero probability that Cj+1 has an improving flip to 0 in
some induced CP-net.

THEOREM 4. LN -OPTDECISION can be computed in polyno-
mial time for tree structured PCP-nets.

Let Q be a tree structured PCP-net with dependency graph G. We
propose an algorithm that visits each variable in G in a bottom-up,
post order manner. Let X be visited in the current iteration, and let
W denote the only parent of X . Suppose we have computed the
quantity lwx for every x ∈ D(X), which stores the minimum pos-
sible contribution to the neighborhood loss from X and its descen-
dants when W = w and X = x. Then, for every w ∈ D(W ) we
determine the assignment x ∈ D(X) to X that minimizes the con-
tribution to the neighborhood loss from X and its descendants and
store it in valwX = arg minx l

w
x by minimizing over x ∈ D(X).

Intuitively, valwX stores the value of X that can ensure the lowest
contribution to the neighborhood loss from assignments X and its
descendants. We now revisit the computation of lwx . Let Y be the
descendants of X . lwx is computed as lwx = lxvalx

Y
+ fX

Q,w(x̄ � x).
When the algorithm computes the value of the root variable that

minimizes the l value, we can retrieve the solution ~d by backtrack-
ing in a top down manner: At each iteration, let the current vertex
be X with the assignment x, and its descendants be the set of vari-
ables W . Set each W to the value valxW .

EXAMPLE 3. Consider the example PCP-net in Figure 2. We
trace the steps performed by the algorithm in Theorem 4.



At iteration 1, we start at W and compute the distribution lMW =

(l
Mb
Wr

= 0.4, l
Mb
Ww

= 0.6, l
Mf

Wr
= 0.7, l

Mf

Ww
= 0.3). We can now

compute valMb
W = Wr, val

Mf

W = Ww. Then we move up one
level.

At iteration 2, we are currently at M and compute l∅M = (l∅Mb
=

0.3 + l
Mb
Wr
, l∅Mf

= 0.7 + l
Mf

Ww
) = (l∅Mb

= 0.3 + 0.4, l∅Mf
=

0.7 + 0.3).
The choice of Mb guarantees the lowest possible neighborhood

loss from M and its descendants. We have that valMb
W = Wr .

Indeed, serving beef with red wine guarantees the lowest possible
neighborhood loss.

THEOREM 5. LG-OPTDECISION is coNP-hard for acyclic
PCP-nets.

PROOF. We show a reduction from 3-SAT to the complement of
LG-OPTDECISION, LG-OPTDECISION defined as: given a PCP-
net Q, a parameter k, is it true that ∀~d, LG(Q, ~d) > k. It is easy
to verify that the problem is in PSPACE. The construction is a
slight modification of the construction used in the proof of The-
orem 2. The PCP-net Q (See Figure 5) is different from the CP-net
in the proof of Theorem 2 in the following ways. We note that
k = 22m+n remains the same.
• The number of D variables is 4m+ n+ 1 now (vs. 2m+ n+ 1
in the proof of Theorem 2).
• For all Vi, V̄i, we now have 1 � 0 with probability 0.5.

C1

...

... Cn

Vn1
... V̄n3 1 � 0 with probability 0.5

D0

Cn value pref.
0 0 � 1
1 1 � 0

D1
... D4m+n

D0 value pref.
0 0 � 1
1 1 � 0

Figure 5: Construction of PCP-net from 3-SAT instance for Theo-
rem 5.

Let φ satisfy F . Consider the CP-net instance C where for ev-
ery i such that φi = 1, C has CP-table entries 1 � 0 for Vi, and
0 � 1 for V̄i. Similarly for every i such that φ = 0, let 0 � 1
be the entry for Vi, and 1 � 0 be the entry for V̄i. This CP-net
is induced with probability 0.52m. Let ~d have dVi , dV̄i

set accord-
ing to φ, all dCj = 1, and have all dDi = 0. It is clear that
LG(C, ~d) = 24m+n. Now, consider the set of assignments ~d′ that
do not match ~d in the values of any or all of the variables Vi, V̄i or
Cj . By construction of C, there is always a sequence of improving
flips from such ~d′ to ~d as follows: If ~d′ differs in the value of Vi or
V̄i: then either Vi 6= V̄i (then there is an improving flip to Vi = V̄i),
or Vi = V̄i already. In either case, there is an improving sequence
to an assignment where Cn = 0, and subsequently to one where all
Di = 0. Then, there is always an improving sequence to ~d. Every
such assignment ~d′ has loss of at least 24m+n in C.

Consider the remaining assignments ~d′ that match ~d in values of
Vi, V̄i, and Cj , but some k ≥ 1 among D0, ..., D4m+n are set to
1. Consider the case where D0 = 0, then there is an improving
sequence from ~d′ to ~d. Now, consider the case where D0 = 1 in
~d′. Then, consider the CP-net C′ induced with probability 0.52m

where variable of type Vi, V̄i has preference 1 � 0 over it. There
is an improving sequence from ~d′ to a ~d′′ where all Di are set to 1.

By construction ofC′, there is an improving sequence to an assign-
ment where all variables Vi, V̄i are set to 1, and all Cj are set to 0.
Subsequently, there is a flip to an assignment where D0 = 0 and
then Di, 1 ≤ i ≤ 4m+ n can flip independently to 0. The loss of
~d′ in C′ is at least 24m+n. We have shown that when F is satisfi-
able, every assignment has a loss at least 24m+n w.r.t. some CP-net
which occurs with probability 0.52m. Therefore, every assignment
has expected global loss of at least 22m+n.

Let F be unsatisfiable. Consider the assignment ~0. By construc-
tion there does not exist any assignment to Vi, V̄i that causes im-
proving flips from ~0 to an assignment where Cn = 1. For sake of
contradiction, consider an assignment ~d′ where Cn = 1 obtained
by an improving sequence from ~0 w.r.t. some CP-net C. Consider
the sequence S used to obtain ~d′. By construction everyCi<n must
be flipped to 1 before Cn, and every such flip happens in a setting
of Vi, V̄i that is consistent with an assignment to the Boolean vari-
ables xi that satisfies the clause ci. Note that once either Vi, V̄i is
flipped to 1, it cannot be flipped back. Together, this implies that
there is an assignment of the Boolean variables which satisfies F ,
a contradiction.

Therefore, for any CP-netC that is induced with non-zero proba-
bility according toQ, the global loss of~0 is at most 22m+n−1, and
involves improving flips in the values of 2m variables Vi, V̄i, and
n variables Ci. Therefore, when F is unsatisfiable, the assignment
~0 has loss less than 22m+n.

5. COMPUTING OPTIMAL DECISIONS
FOR CP-NET PROFILES

Given a profile P = (P1, ..., Pn), a collection of n CP-nets,
we define the loss of a decision ~d w.r.t. P and a loss function L
as L(P, ~d) =

∑n
i=1 L(Pi, ~d). An optimum decision is one that

minimizes the loss. This leads to a new class of voting rules char-
acterized by a loss function. Given a loss functionL, the voting rule
rL takes as input a profile P of CP-nets and outputs a set of out-
comes that minimize the loss w.r.t. the preferences in P and the loss
function L. Formally, rL(P ) = arg min~d L(P, ~d). We define the
decision problem of computing optimal joint decisions under this
setting for a profile of CP-net preferences,L-OPTJOINTDECISION,
as follows.

DEFINITION 9 (L-OPTJOINTDECISION). Given a profile P ,
a collection of CP-net preferences, a loss function L, and a number
k ∈ R, does there exist an assignment ~d such that L(P, ~d) ≤ k?

PROPOSITION 6. L0−1-OPTJOINTDECISION is in P for a pro-
file with acyclic CP-nets and NP-complete for cyclic CP-nets.

PROOF. For every CP-net Pi ∈ P , there exists a unique de-
cision with loss 0 which corresponds to the unique undominated
outcome, and every other decision has loss 1. This outcome can
be computed in polynomial time. It is easy to check that the set of
decisions that have 0 L0−1 loss in a majority of the CP-nets in P
minimize the loss w.r.t. L0−1 and that this set can be computed in
polynomial time by computing the unique, undominated outcome
for each CP-net in the profile.

The NP-completeness for the case of cyclic CP-nets follows from
Proposition 3.

THEOREM 6. LN -OPTJOINTDECISION is NP-complete for an
O-legal profile of acyclic CP-nets.

PROOF. We give a reduction from 3-SAT. Given a 3-SAT in-
stance F = C1 ∧ ... ∧ Cn, we consider the following construction



of an instance of LN -OPTJOINTDECISION on anO-legal profile P
with two votes P1 and P2 with the same dependency graph:
• I = {Vi, V̄i}1≤i≤m ∪ {Ci}1≤i≤n ∪ {D} is a set of binary vari-
ables. Each Vi, V̄i corresponds to a Boolean variable xi involved
in the 3-SAT instance. Each Ci corresponds to the clause Ci in F .
• For allCi ∈ I , let xi1, xi2, xi3 be the variables involved in clause
Ci. Then, (a) for all Vi, V̄i ∈ I , we let Pa(Vi) = Pa(V̄i) = ∅,
(b) Pa(Ci) = {Vi1, ..., V̄i3}, and importantly, (c) for all
2 ≤ i ≤ n, we let Pa(Ci) = Pa(Ci) ∪ {Ci−1}.
• Pa(D) = Cn.

We now define the CP-tables. The CP-net P1 has CP-tables as
follows:
• For all Vi, V̄i, 1 � 0.
• For all Ci, we add the entry 1 � 0 for every assignment to
Pa(Ci) where there exists a k ≤ 3 such that all the following con-
ditions are satisfied: (1) Vik 6=V̄ik , (2) Vik = 1 if xik is in clause
j, OR Vik = 0 if ¬xik is in Cj , and (3) Ci−1 = 1 if i > 1. Add
entry 0 � 1 for all remaining assignments.
• For D: if Cn = 1, 1 � 0. Otherwise, 0 � 1.

The CP-net P2 has CP-tables as follows:
• For all Vi, V̄i, 0 � 1.
• For all Ci, we add the entry 1 � 0 for every assignment to
Pa(Ci) where there exists a k ≤ 3 such that all the following con-
ditions are satisfied: (1) Vik 6=V̄ik , (2) Vik = 1 if xik is in clause
j, OR Vik = 0 if ¬xik is in Cj , and (3) Ci−1 = 1 if i > 1. Add
entry 0 � 1 for all remaining assignments.
• For D, 1 � 0.

We show thatF is satisfiable if and only if there exists an assign-
ment ~d such that LN (P, ~d) ≤ 2n.

Note that the only outcomes that contribute to the neighborhood
loss of a given outcome are those that can obtained using a single
improving flip i.e. in the change in the value of a single variable that
is locally improving. Note also that for any assignment ~d, the to-
tal contribution from improving flips involving the variables Vi, V̄i

from both the CP-nets together is exactly 2n.
⇒ Let φ be an assignment to the Boolean variables that satis-

fies F . Let ~d be the assignment where (i) whenever φi = 1,
dVi = 1, dV̄i

= 0, and whenever φi = 0, dVi = 0, dV̄i
= 1,

(ii) all dCi = 1, and (iii) dD = 1. By construction, in either of
the CP-nets P1, P2, the only variables that can change value in a
single improving flip are the variables Vi, V̄i. Thus, the total neigh-
borhood loss of ~d w.r.t. the profile P is exactly 2n.
⇐ Let F be unsatisfiable, and for the sake of contradiction, let ~d

be an assignment with loss LN (P, ~d) ≤ 2n. Every assignment has
neighborhood loss of exactly 2n contributed by the variables Vi, V̄i

from both the CP-nets P1, P2 together. Now, if dCn = 0, then by
construction, for any value of dD , there is an improving flip in the
value of D w.r.t. the preferences in one of the CP-nets P1, P2. If
dCn = 1, and there is some i < n such that dCi = 0, then there
must exist a pair Cj , Cj+1, j < n such that dCj = 0, dCj+1 = 1.
Then, there is an improving flip to 0 involving Cj+1 in at least one
of the CP-nets. If dCn = 1, and dCi = 1 for all i < n, then, by
construction, either there is an improving flip in the value of some
Ci or F is satisfiable, a contradiction.

THEOREM 7. LN -OPTJOINTDECISION is in P for a profile of
acyclic, tree structured CP-nets with a common dependency graph
G.

PROOF. Let P = (P1, ..., Pn) be a profile of tree structured
CP-net preferences over a set of issues I , that share the same de-
pendency graph G. We propose a small modification to the algo-
rithm in Theorem 4 that iteratively visits each variable in G in a
bottom-up, post order manner. We will describe the algorithm for

the case of binary valued variables for the sake of presentation, but
we note that it is easy to extend to multi-valued variables.

LetX be the variable that is being visited in the current iteration,
and let W be the parent of X in G. For every CP-net Pi, every
x ∈ D(X), and every w ∈ D(W ), we store a value lwi,x that tracks
the minimum contribution to the neighborhood loss from X and
its descendants in G when W = w, and X = x. For every x ∈
D(X), and every w ∈ D(W ), we store a value lwx =

∑
1≤i≤n l

w
i,x

which tracks the contribution for the entire profile. Note that for a
given value w of the variable W , and quantities lwx for every x ∈
D(X), valwX = arg minx l

w
x determines the value of x that ensures

the lowest contribution to the neighborhood loss from improving
flips in the values of X and its descendants in G from the entire
profile.

Let us revisit the computation of lwx . Let Y be the descendants of
X . The quantity lwx is computed as: lwx =

∑
1≤i≤n l

x
i,valx

Y
+ {1,

if x̄ �X
Pi,w

x; 0, otherwise}.
When the algorithm computes the value of the root variable that

minimizes the l value, we can retrieve the solution ~d by backtrack-
ing in a top down manner: At each iteration, let the current vertex
be X with the assignment x, and its descendants be the set of vari-
ables W . Set each W to the value valxW .

THEOREM 8. LG-OPTJOINTDECISION is coNP-hard for an
O-legal profile of acyclic CP-nets.

PROOF. We give a reduction from 3-SAT. Given a 3-SAT
instance F = C1 ∧ ... ∧ Cn, we give a polynomial
time reduction to the complement of LG-OPTJOINTDECISION,
LG-OPTJOINTDECISION which we define as: given a pro-
file of CP-net preferences P , a parameter k, is it true that
∀~d, LG(P, ~d) > k. Consider the following construction of an in-
stance of LG-OPTJOINTDECISION on an O-legal profile P . We
will show that F is satisfiable if and only if ∀~d, LG(P, ~d) >
22m+n − 1.

All the CP-nets in P are defined over the following set of vari-
ables:
• I = {Vi, V̄i}1≤i≤m ∪ {Ci}1≤i≤n ∪ {Di}0≤i≤2m+n is a set of
binary variables. Each Vi, V̄i corresponds to a Boolean variable xi
involved in the 3-SAT instance. Each Ci corresponds to the clause
Ci in F .

The constructed profileP = (P0, P1, P̄1, ..., Pm, P̄m) of 2m+1
votes is O-legal w.r.t. O = V1 � V̄1 � ... � V̄m � C1 � ... �
Cn, D0 � ... � D2m+n.
I The CP-net P0 has the following dependency graph (See Fig-
ure 3):
• For allCi ∈ I , let xi1, xi2, xi3 be the variables involved in clause
Ci. Then, (a) for all Vi, V̄i ∈ I , we let Pa(Vi) = Pa(V̄i) = ∅,
(b) Pa(Ci) = {Vi1, ..., V̄i3}, and importantly, (c) for all
2 ≤ i ≤ n, we let Pa(Ci) = Pa(Ci) ∪ {Ci−1}.
• Pa(D0) = {Cn}.
• For all i = 1, ..., 2m+ n, Pa(Di) = {D0}
� We populate the CP-tables of P0 as follows:
• For all Vi, V̄i, 1 � 0.
• For all Ci, we add the entry 1 � 0 for every assignment to
Pa(Ci) where there exists a k ≤ 3 such that all the following con-
ditions are satisfied: (1) Vik 6=V̄ik , (2) Vik = 1 if xik is in clause
j, OR Vik = 0 if ¬xik is in Cj , and (3) Ci−1 = 1 if i > 1. Add
entry 0 � 1 for all remaining assignments.
• For D0: if Cn = 1, we add the entry 1 � 0. Otherwise, 0 � 1.
• For all i = 1, ..., 2m + n, Di: if D0 = 1, 1 � 0. Otherwise,
0 � 1.
I For every j = 1, ...,m, we construct CP-nets Pj and P̄j . We
describe the construction of Pj below. The CP-net Pj has the fol-



lowing dependency graph (See Figure 6):
• For all 1 ≤ i ≤ m, Pa(Vi) = Pa(V̄i) = ∅. For all 1 ≤ i ≤ n,
Pa(Ci) = ∅.
• Pa(D0) = {Vj}.
• For all i = 1, ..., n+m, Pa(Di) = {D0}
� We populate the CP-tables of Pj , 1 ≤ j ≤ m as follows:
• For all Vi, V̄i, 0 � 1.
• For all Ci, 0 � 1.
• For D0: if Vj = 1, 1 � 0. Otherwise, 0 � 1.
• For all i = 1, ..., n + m, Di: if D0 = 1, 1 � 0. Otherwise,
0 � 1.

The construction of P̄j differs only in V̄j taking the place of Vj

in the above description.

V1 V̄1
... Vi

... V̄m

pref.
0 � 1

C1
... Cn

pref.
0 � 1

D0

Vi pref.
0 0 � 1
1 1 � 0

D1

D0 pref.
0 0 � 1
1 1 � 0

... D2m+n

Figure 6: Construction of CP-nets Pj , 1 ≤ j ≤ m in the proof of
Theorem 8. CP-nets P̄j are constructed in a similar manner.

⇒ Let F be a satisfiable instance of 3-SAT and φ be an assign-
ment to the Boolean variables that satisfies F . We start by showing
that when F is satisfiable, for every assignment ~d, LG(P, ~d) >

22m+n − 1. First, consider any decision ~d such that dD0 = 1.
By construction of the CP-net P0, there is a sequence of improving
flips from ~d to the assignment~1. By construction of P0, there exists
a sequence of improving flips from~1 to every ~d′ where one or more
of dD1≤i≤2m+n

= 0. Therefore, by construction of P0, any such ~d
has loss LG(Pi, ~d) ≥ 22m+n. Now, consider any decision ~d where
for some 1 ≤ i ≤ m, dVi = 1. If dD0 = 0, then by the con-
struction of CP-net Pi, LG(Pi, ~d) ≥ 22m+n. Lastly, consider the
decision ~0. By construction of P0, there is an improving sequence
to an assignment ~d′ such that if φi = 1, d′Vi

= 1, d′V̄i
= 0, and if

φi = 0, d′Vi
= 0, d′V̄i

= 1. Again, by construction there is an im-

proving sequence ~d1, ..., ~dn where each ofC1, ..., Cn are flipped to
1 in turn. Finally, there is an improving sequence to every ~d′′ where
any or all of d′′D0≤i≤2m+n

= 1. Therefore, LG(P0,~0) ≥ 22m+n.
This completes the proof that if F is satisfiable, then for every de-
cision ~d, LG(P, ~d) > 22m+n − 1.
⇐ Suppose for the sake of contradiction that F is unsatisfiable

and LG(P,~0) > 22m+n − 1. Note that by construction, for ever
1 ≤ i ≤ m, LG(Pi,~0) = 0 and LG(P̄i,~0) = 0. Then, it must be
that LG(P0,~0) > 22m+n − 1 i.e. that all the loss is contributed by
the CP-net P0. However, the loss contributed by improving flips in
variables Vi, V̄i, Ci is exactly 22m+n − 1. Therefore, there must
be a sequence of improving flips involving an flip in the value of
one of the variables D0, ..., D2m+n. Consider any such sequence
S. There must be an assignment in S where Cn is first flipped
to 1, which must be preceded by assignments where C1, ..., Cn−1

are flipped to 1 in turn. As argued in the proof of Theorem 2, this
implies that F is satisfiable, a contradiction.

While the exact complexity remains open, it is easy to see that
the problem is in PSPACE, by the result in Theorem 2.

5.1 Axiomatic Properties
Let P be any profile. A voting rule r satisfies (i) anonymity, if

for every profile P ′ obtained by permuting the names of the vot-
ers, r(P ′) = r(P ), (ii) category-wise neutrality [16], if for ev-
ery profile P ′ obtained by applying a set of permutations that each
permutes the elements in the domain of the same variable, the re-
sult r(P ′) is the set of outcomes in r(P ) permuted in the same
way, (iii) consistency, if for every pair of profiles P 1, P 2, where
r(P 1) ∩ r(P 2) 6= ∅, r(P 1) = r(P 2) = r(P 1 ∪ P 2) , (iv) weak
monotonicity, if for every ~d ∈ r(P ), and for every P ′ obtained by
replacing a CP-net C ∈ P by a CP-net C′ where for some Xi,
the rank of di is raised in the CP-table entry corresponding to the
valuation dPa(Xi) of variables Pa(Xi), it holds that ~d ∈ r(P ′).

THEOREM 9. For every loss function L in our framework, the
voting rule rL satisfies anonymity, category-wise neutrality, con-
sistency and weak monotonicity.

PROOF. (Sketch) Let N = {1, ..., n} be a set of agents. Let
P = (P1, ..., Pn) be a profile of CP-nets over I = {X1, ..., Xp},
where Pi represents the vote of agent i ∈ N .
Anonymity. The set of CP-nets remains unchanged in the profile
obtained by permuting the names of agents.
Consistency. For any two profiles P 1, P 2, if ~d minimizes the loss
for P 1, P 2 individually, ~d minimizes the loss for P 1 ∪ P 2.
Category-wise neutrality. LetM = (M1, ...,Mp) be a collection
of permutations where each Mi only permutes D(Xi). Let P ′ be
the profile obtained by applying M to the CP-nets in P . Let C′

be a CP-net obtained by applying M to C. Let ~e be an assignment
obtained by performing an improving flip in, say, the value of Xi,
from an assignment ~d according to C. Let ~d′, ~e′ be assignments
obtained by applyingM to ~d,~e respectively. It is easy to check that
~e′ can be obtained by an improving flip in Xi from ~d′ according
to C′. Therefore, L(C′, ~d′) = L(C, ~d), and if an assignment ~d
minimizes the loss w.r.t. loss functionL for profile P , ~d′ minimizes
the loss w.r.t. P ′.
Weak monotonicity. Let ~d ∈ rL(P ), and C be a CP-net in P . Let
C′ be obtained from C by increasing the rank of di in the CP-table
entry of Xi corresponding to the valuation Pa(Xi) = dPa(Xi).
Let P ′ be obtained from P by replacing C with C′. It is easy to
check that for any ~d′ where ~d′Pa(Xi) 6= ~dPa(Xi), L(C′, ~d′) =

L(C, ~d′). For any ~d′ where ~d′Pa(Xi) = ~dPa(Xi), and d′i = d̄i,
L(C′, ~d′) > L(C, ~d′). For any ~d′ where ~d′Pa(Xi) = ~dPa(Xi), and
d′i = di, L(C′, ~d′) < L(C, ~d), and among these ~d minimizes the
loss w.r.t. C′. The contribution to the loss of ~d from every other
CP-net in P remains unchanged. Therefore, if ~d ∈ rL(P ), then
~d ∈ rL(P ′).

6. SUMMARY AND FUTURE WORK
In this paper, we introduced the notion of loss functions to make

optimal decisions for PCP-nets and collections of CP-nets with
acyclic and possibly cyclic dependencies. The results for PCP-nets
are, to the best of our knowledge, the first of their kind. We also
introduced a new class of voting rules characterized by a loss func-
tion that computes the set of optimal loss minimizing decisions for
a profile of CP-nets. We characterized the computational complex-
ity of specific loss functions and showed that every loss function
in our framework satisfies desirable axiomatic properties. The full
space of reasonable restrictions and assumptions under which it is
possible to efficiently find optimal solutions remains to be explored.
We also intend to study social choice normative properties of mech-
anisms under our framework.
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