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ABSTRACT
We consider a social choice problem where only a small subset of
voters actually votes. The outcome of a vote with low participa-
tion rate could be far from the outcome reached by a vote with full
participation. A possible solution to a vote with low participation
rate is allowing voting by proxies. Proxy voting is a scenario which
enables the voters that do not vote to transfer their voting rights to
another voter.

In some voting settings voters try to discover or agree upon some
ground truth while each voter gets a noisy signal about that truth
[1, 7]. From this viewpoint, different voting scenarios can be com-
pared upon the expected distance of the aggregated outcome from
the truth. By comparing voting with and without proxies, we try to
define the conditions under which proxy voting helps to get closer
to the truth. A specific model of proxy voting was suggested and
studied in [4]. In this paper we apply this model to the case where
a ground truth exists. We analyze datasets of social choice and
multiple-choice questions and show that Proxy voting can be ben-
eficial in order to find an outcome that is closer to the ground truth.
When the participation rate is low enough, proxy voting is always
beneficial. In some instances, proxy voting can even get closer to
the truth than a vote with full participation. This is a bit surprising
since proxy voting uses strictly less information than full participa-
tion vote.

1. INTRODUCTION
In the model of proxy voting suggested by [4], it is shown that in

various domains, allowing proxy voting results in an outcome that
is closer to the aggregated opinion of the entire population. This
means that proxy voting improves the social outcome when the out-
come reached by the whole population is assumed to be good. In
contrast to [4], where it is assumed that the aggregated vote of the
entire population is optimal, in this paper we consider voting pro-
files that are derived from some ground truth. Thus the criterion for
successful voting mechanisms is finding an outcome that is close to
this ground truth. This paper compares proxy voting to full partic-
ipation vote and to partial participation vote, and categorizes the
conditions for which proxy voting is beneficial i.e. it results in an
outcome that is closer to the ground truth according to some natural
metric.

For example, when votes are orders (permutations) over a set, a
natural metric is the Kendall tau distance. We use this distance to
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assign proxies (i.e., an inactive voter will relegate her voting rights
to the voter with nearest vote). Then we aggregate votes to a sin-
gle order using some standard social welfare function (voting rule),
where only active voters participate, and are weighted by their num-
ber of followers. Finally, we measure the Kendall tau distance from
the aggregated outcome and the ground truth.

1.1 Contribution
We apply the proxy voting model from [4] both to synthetic

datasets generated from Mallow’s distribution model with a given
ground truth order, and to empirical datasets in two natural do-
mains. The first is from a crowd sourcing experiment where sub-
jects were requested to order four items according to their correct
order [6], and the second is from Pisa standard tests take by Israeli
students.

We show that for all voting rules we tried and for every sample
size, it is beneficial to allow inactive voters to use proxies, in the
sense that the aggregated vote becomes closer to the ground truth
on expectation. For some datasets, proxy voting can be even better
than a full participation vote.

We analyze the reasons for this improvement by looking at the
distribution of proxies’ weights, and suggest a preliminary theoret-
ical result that explains why better proxies get higher weights.

2. PRELIMINARIES
We follow the model and the definitions of [4] as described be-

low.

Domains.
X is the space, or set of possible votes, or voter types. Consider

some finite set of alternatives A = {a1, . . . , al}. In this paper we
will consider two Domains:

1. multiple discrete issuesX = Ak with the Hamming distance

2. ordinal preferences X = Π(A) with the Kendall tau dis-
tance.

distances.
The Hamming distance between two agents’ positions v1, v2 is

the number of issues on which the agents disagree on. For example,
the Hamming distance between v1 = (1, 5, 0, 0), v2 = (2, 1, 0, 1)
is 3 since the agents’ positions are different in issues j = 1, 2, 4.

The Kendall tau distance between two ranking is the number of
pairwise disagreements between them. Kendall tau distance is also
called bubble-sort distance since it is equivalent to the number of
swaps that the bubble sort algorithm would make to place one list
in the same order as the other list. For example, the Kendall tau
distance between (a,b,c,d) and (b,c,a,d) is 2, since two swaps are



needed in order to get from the first ranking to the second. Note that
Hamming distance between agents’ positions equals the Kendall
tau distance between their ranking.

Ground Truth and profiles.
The Truth T ∈ X is a particular point in space (either an m-size

vector in domain (1), or an order over alternatives in domain (2)).
The model does not assume a priori any dependence between the
truth and the voting profiles.
SN is the voting profile of the set of voters N of size n. The

interesting cases are when society have some idea about the truth,
that is to say, there is some dependency between SN and the truth
T .

Mechanisms.
A mechanism g : Xn → X (also called a voting rule) is a func-

tion that maps any profile (set of positions) to a winning position.
For the binary issues we will focus on a simple Majority mech-

anism that aggregates each issue independently according to the
majority of votes. That is, (mj(S))(j) = 1 if |{i : s

(j)
i = 1}| >

|{i : s
(j)
i = 0}| and 0 otherwise, where s(j) is the j’th entry of

position vector s. For example, say that the number of voters n is
7, for any issue j the outcome of the mj mechanism will be ‘1’ if
at least 4 of the voters vote ‘1’, else the outcome will be ‘0’. In all
mechanisms we break ties uniformly at random.

For the ordinal preferences we use pairwise majority (mj) in
addition to four different voting rules: Kemeny, Borda, Plurality
and Veto which are denoted respectively by km,bo,pl and vt.
In order to aggregate pairwise majority, ordinal votes are converted
into issues by checking for each pair of alternatives (α, β) whether
α is preferred over β. For example assume votes are a strict ranking
of 4 alternatives, then a conversion into issues will result in

(
4
2

)
=

6 discrete binary issues. On each issue a majority voting rule is
resolute.

All the voting rules (mechanisms) that we use naturally extend to
weighted finite populations, by considering voting with wi copies
of voter i

Scenarios.
We label the ’everyone vote’ scenario as E, the basic scenario as

B and the proxy scenario as P . In scenario E, all voters votes and
the result is g(SN ). In scenario B, only the subset of active voters
M ⊆ N votes, while inactive voters abstain. The result is g(SM ).
In scenario P , active voters vote, while each unavailable voter grant
her voting right to an active voter. Given a set M of active agents,
the decisions of inactive voters are specified by a mapping JM :
X → M , where JM (x) ∈ M is the proxy of any voter located at
x ∈ X . Thus the results in scenario P is g(SM ,wM ), where for
each j ∈ M , wj = |{i ∈ N : J(si) = j}|, i.e. the weight of
proxy j is the number of inactive voters who select proxy j, plus
himself.

Without further constraints, we will assume that the proxy of a
voter at x is always its nearest active agent, i.e. the agent whose
position (or vote) are most similar to x. Thus for every subset of
active agents M , we get a partition of X . We can compute accord-
ing to the metric we choose the weight of each active agent j. This
is done by summing the number of inactive agent that j is their
closest active agent. Formally, JM (x) = argminj∈M ‖x− sj‖
and wj = |{i ∈ N : J(si) = j}|. For example, voter i′ is at lo-
cation xi′ and is following the closest active voter to her, which is
JM (xi′) = argminj∈M ‖xi′ − sj‖ = j′, the weight of proxy j′ is
increased by one. If there are several proxies at the same distance,
voter i selects one of them at random.

To recap, an instance is defined by a profile SN and a truth T .
Each instance produce an outcome according to the scenario Q ∈
{E,B, P}, mechanism g∈{km,bo,pl,vt,mj}, and the sample
size |M | = m.

Evaluation.
We want to measure how close is gQ(SN ) to the truth T . We

define the error as the distance between gQ(SN ) and the truth.
Note that the Kendall tau distance is the Hamming distance over the
induced binary vectors of pairwise preferences (where each pair of
alternatives inA induces a binary issue). Thus the distance between
any two votes s, s′ ∈ X can be written as ‖s− s′‖ (since these are
binary vectors it does not matter which norm is used). In particular,
the error of g on SN in scenario Q is ‖gQ(SN )− T‖.

The loss of a mechanism g is calculated according to its mean
square error (MSE)—the expected squared distance from the truth—
over all samples of m available voters.

LQ(T, SN ,m) = EM∼U [Nm]

[
‖gQ(SN )− T‖2

]
, (1)

where the mechanism g can be inferred from the context, and the
expectation is over all subsets of m positions sampled uniformly
without repetitions from SN (sometimes omitted from the sub-
script).

3. SIMULATIONS
The experiments were designed to test two hypothesis:

1. LP < LB for every voting rule. That is, whether for random
samples of a given size m, proxy voting always yields an
outcome which is closer to the truth than an outcome yield
by unweighted vote with the same set of proxies.

2. there is some setting where LP < LE . That is, under certain
parameters, taking a sample of active voters and use them
as proxies will yield an outcome which is closer to the truth
than the outcome reached by aggregating all votes.

3.1 Datasets

3.1.1 Generative model of votes
We generate synthetic profiles, by sampling rankings from Mal-

low’s model. Mallow’s distribution model is a distance-base rank-
ing model, which is parametrized by a true order T and a disper-
sion parameter φ ∈ (0, 1]. For any ranking r ∈ Π(A), the Mallows
model specifies:

Pr(r) = Pr(r|T, φ) =
1

Z
φd(r,T )

Where d is the Kendall tau distance and Z =
∑

r′∈ω φ
d(r′,T ) is

a normalization constant. When φ = 1 the distribution is uniform
over all permutations (very noisy), when φ � 1 almost all the
mass is concentrated at T (small amount of noise). Using synthetic
datasets helps understanding the role of each parameter while fixing
the others. Mallow’s distribution model is one of the two most
popular noise models in the machine learning community together
with Plackett-Luce [5].

3.1.2 Natural experiments
We used two ranking datasets made by [6] using crowd-sourcing.

One is referred to as the dots dataset. In that test voters were
shown four pictures with dots and were asked to ranked the pic-
tures by the number of dots from least to most. The number of



Figure 1: L{E,B,P}, under generative model of preference, us-
ing five voting rules. Note that for Mallow’s model with low
dispersion LE < LP < LB . For Mallow’s model with high
dispersion φ = 0.95, (high mistakes probability) LP < LE .

dots in the pictures were {200, 200 + i, 200 + 2i, 200 + 3i} for
i = {3, 5, 7, 9}. The data contain at each level of noise, i, 40
preference profiles. Each profile contain about 20 voters. This test
has been suggested as a benchmark task for human computation
in [2]. In the second dataset, refereed as the sliding puzzle, vot-
ers had four situations of a size 8 sliding puzzle, and they had to
order those puzzles by the minimal number of moves left to solve
them. The number of minimal moves were {d, d+3, d+6, d+9},
for d = {5, 7, 9, 11}. Again, 40 preference profiles, each contain-
ing 20 voters, were gathered. Those dataset were valuable for us
since they contain a true order. A comprehensive explanation on
how the data was gathered in the two experimental datasets can
be found at [6]. Another dataset that we examined is the results
of a test called the program for international student Assessment
(PISA). This test evaluate education systems worldwide by testing
the skills and knowledge of 15-year-old students. We where look-
ing for a dataset of multi choice questions (without missing data),
thus we included only the students who answered all of the first 18
multiple choice questions. This data match the first domain (multi-
ple discrete issues). Our dataset contain n = 571 student (voters),
answering k = 18 questions (issues), each question has 4 possible
answers.

3.1.3 Method
The simulation start by creating a profile of votes, either by sam-

pling from Mallow’s model or by loading the empirical datasets.
Then, a ranking profile of active voters was simulated for each
scenario: The E scenario used the original profile with N vot-
ers. The B scenario sample uniformly at random, a given size
m < n of active voters while the other abstained. In P scenarioM
were active voters while each of the other voters N \M becomes
a clone of her closest agent in M . Thirdly an aggregated order
was calculated for each scenario using five popular voting rules:
{km,bo,pl,vt,mj}. Lastly, for each voting rule, we compared
the Kendall tau distances (Hamming distance for Pairwise major-
ity) from the truth T to the order obtained by each scenario.

Figure 2: L{E,B,P}, for puzzle and dots datasets, using five vot-
ing rules. Proxy voting is doing better than random sample, i.e.
LE < LP < LB .

3.2 Results
Our simulations on the generative model shows that LP (g) <
LB(g) for all five voting rules g, in all datasets, and for almost
every sample size m (Figs. 1, 2 and 5). Same results are obtain
analyzing the Pisa dataset (Fig. 9) with the Majority voting rule (In
this dataset the domain is multiple discrete issues, thus the voting
rule is majority.) This results supports our conjecture that proxy
voting reveals ground truth better than a random sample, and often
considerably better.

The big difference in the settings from [4] is that when there is
some hidden ground truth, the outcome gathered from full partici-
pation vote (scenario E) is not necessary optimal. On some votes
the best active voter get much closer than the aggregated decision
of the entire population, thus there is hope that with the appropri-
ate weights, proxy voting can do better than E. Indeed for some
datasets proxy voting is even better than a full participation vote,
e.g., Mallow’s model with 4 alternatives, 20 voters and φ = 0.95
(Fig. 1). This is also true for about half the crowd-sourcing datasets
(Fig.3). This is an interesting phenomenon since proxy voting uses
strictly less information than a full participation vote. In future
work we will try to characterize the conditions for that to happen.
For now we only found some rules of thumb:

• Amount of noise should be high enough in order to make
the E scenario do pretty bad. If ordering is too easy, E will
have almost no loss, thus no scenario can do better, this is the
situation in [4] where the outcome reached by scenario E is
the optimal one.

• There should be high variance in the individual performance
of voters. If all voters have roughly the same accuracy then
proxy voting does not help much.

3.3 Analysis
Denote by Ri = ‖si − T‖ the distance of voter i from the truth.

The reason that proxy voting gets closer to the truth than a random
sample lies in the weight distribution of the proxies. While in sce-
nario B the weights are uniform by definition, at scenario P the
weights are roughly decreasing in their ratio of mistakes Ri, that is



Figure 3: LE vs. LP , examining the 40 dots datasets (noise level
i=3), under Borda voting rule and m = 10 proxies. Markers
under the 45 degree line are datasets where P is closer to the
ground truth than E. A small random noise was added to LE

in order to better visualize close outcomes.

Figure 4: LE vs. LP shown for the 40 datasets of d = 11 puzzle.

to say, better proxies get more voting weight. When dispersion is
low, the distribution of the weights is monotonic decreasing in Ri.
When dispersion raises, some of the voting weight moves towered
the worst proxy, resulting a single dip distribution, with peaks at
the best and worst proxies, see Fig 7.

4. EXPLAINING PROXY WEIGHTS
In the previous section, we observed empirically that better prox-

ies (i.e. ones closer to the ground truth T ) tend to get more follow-
ers and thus higher weight. We are interested in a theoretical model
that explains this. One such result was given in [4] for the limit
case of k → ∞ binary issues, where essentially all inactive voters
select either the best or the worst proxy, according to which one is
closer. However, in realistic scenarios (including our datasets), the
number of issues is much smaller.

We model a simplified version of the problem, where there is
one follower which is requested to choose a proxy from two active
voters. A priori, we only know the distribution of votes, and we

Figure 5: The expected error in scenarios {E,B, P}. Using
Borda voting rule. Examining d = 11 puzzle dataset . LP < LE

for a subset of active voters M large enough.

Figure 6: P is decreasing faster thanB and better approximat-
ing E.

want to estimate the probability that the follower would choose the
better proxy.

Following [4], we model each agent with a fixed error probability
Pi. Consider two active agents with error probabilities Pi < Pj <
0.5, and an inactive agent with error probability Z < 0.5. W.l.o.g.
T = 0. Thus si, sj and z are random binary vectors of length k,
whose entries are ‘1’ with respective probabilities of Pi, Pj , and Z.

Fix the values of the best proxy Pi = P , an inactive agent Z,
and the number of issues k. Denote by ε = Pj − Pi > 0 the dif-
ference in the quality of proxy j from the best proxy. We want to
understand better how the probability of selecting the worse proxy
Pj behaves as ε and k vary. Note that this probability is taken
in expectation over all realizations of si, sj , z, as in each such re-
alization the decision of the inactive voter is deterministic (up to
tie-breaking).

[4] showed that z is more likely to be closer to si, and that the
probability of being closer to j drops exponentially with the num-
ber of issues k. Let qi = Pr(s

(t)
i 6= z(t)) = Pi(1 − Z) + (1 −



Figure 7: Weight per proxy, ordered by the ratio of wrong an-
swers Ri in increasing order. The dots dataset.

Figure 8: Weight per proxy, ordered by the ratio of wrong an-
swers Ri in increasing order. Mallow’s model with 4 alterna-
tives, 20 voters, and dispersion parameter φ = 0.95 .

Pi)Z = Pi + Z − 2PiZ. Indeed, they showed

Pr(‖z − si‖ > ‖z − sj‖) ∼= Φ

( √
k(qj − qi)√

qi(1− qj) + qj(1− qi)

)
,

where Φ(x) = PrX∼N(0,1)(X > x), and the approximation is
due to the Binomial-to-Normal approximation.

Note that qj − qi = Pj + Z − 2PjZ − (Pi + Z − 2PiZ) =
(Pj − Pi)(1− 2Z) = ε(1− 2Z). Thus

Pr(‖z − si‖ > ‖z − sj‖) ∼= Φ

( √
k(qj − qi)√

qi(1− qj) + qj(1− qi)

)

= Φ


√
k(1− 2Z)ε√

(P + Z − 2PZ)(1− (P + ε+ Z − 2(P + ε)Z))
+ (P + ε+ Z − 2(P + ε)Z)(1− (P + Z − 2PZ))



Figure 9: The expected error in scenarios {E,B, P}. Examin-
ing the Pisa dataset. The expected error of E is 3, meaning that
the aggregated majority vote made 3 mistakes out of 18 ques-
tions. The expected error for both scenarios B,P is roughly
decreasing in the number of active votersm but is substantially
lower for P .

= Φ


√
k(1− 2Z)ε√

(4Z2 − 8PZ2 + 8PZ − 4Z + 2P + 1)ε
+ 2Z(1− Z) + 2P (1− P )− 8PZ(1− P )(1− Z)



= Φ

(
C1ε√

C2ε+ C3

)
= Φ

(
Θ(
√
ε)
)

= exp(−Θ(ε)).

For some constants C1 > 0, C2 > 0, C3

That is, the probability that j is selected decreases exponentially
fast in the distance between the error rate of j and that of the best
proxy. The drop is exponential when the distance is large enough
and there are enough issues. Another observation is that if we
fix ε < P < 0.5 and Z approaches 0.5 (i.e. an ignorant inactive
agent), then the term in brackets approaches 0. In other words,
ignorant agents spread their weight roughly evenly over all active
voters, whereas smart agents are substantially more likely to give
their vote to a good active voter.

This supports the intuitive argument from [3] regarding the “Anna
Karenina principle” (as good agents are indeed similar to one an-
other), and thus at least partially explains the weight distribution of
active agents. To see if this is a sufficient explanation, one needs to
compare the actual weight distribution, and specifically wj

w1
, to the

expression above.
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