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ABSTRACT
Recently, there has been increased attention on finding solu-
tions for two-sided markets with strategic buying and selling
agents. However, the known literature largely focuses on so-
lutions in settings where there exists a single commodity for
sale and agents ask/offer one unit of the commodity.

In this paper we present and evaluate a general solution
that matches agents in a dynamic, two-sided combinatorial
market. Multiple commodities, each with multiple units, are
bought and sold in different bundles by agents that arrive
over time.

Our solution, DYCOM, provides the first dynamic two-
sided combinatorial market that allows truthful and individually-
rational behavior for both buying and selling agents, keeps
the market budget balanced and approximates social wel-
fare efficiency. We experimentally examine the allocative
efficiency of DYCOM under variety of distributions of bids
and market demand. The experimental results are given
with respect to our proven theoretical bounds and with re-
spect to other known (dynamic and non-dynamic) two-sided
markets with a single commodity as well as a non-dynamic
combinatorial market. DYCOM performs well by all bench-
marks and in many cases improves on previous mechanisms.

CCS Concepts
•Information systems→Web applications; •Applied
computing → Electronic commerce;

Keywords
Strategic agents, Electronic commerce, combinatorial ex-
changes

1. INTRODUCTION
One-sided auctions have long been studied in economics

and computer science. In particular, such auctions see use
in the multi-agent planning domain for purposes such as
task allocation [12], robot exploration [24], and resource al-
location [9]. One-sided auctions aim to find high-social wel-
fare (SWF) (an efficient) allocation of a commodity to a set
of agents, while ensuring that a truthful reporting of the

Appears at: 4th Workshop on Exploring Beyond the Worst Case in
Computational Social Choice (EXPLORE 2017). Held as part of the Work-
shops at the 16th International Conference on Autonomous Agents and
Multiagent Systems. May 8th-9th, 2017. Sao Paulo, Brazil.

agents’ input is their best strategy. An important extension
of one-sided auctions are one-sided combinatorial auctions
where multiple commodities are offered for sale. Agents bid
on bundles of commodities which allows agents to express
complex preferences over subsets of commodities (see [8] for
many examples within). An elegant and well-studied class of
combinatorial one-sided auctions are the sequential posted
price auctions in which the agents are presented sequentially
with a vector of prices and must choose their preferred bun-
dle given the price vector (among the first studied are [1,
20]). One-sided combinatorial auctions have been applied
to various problems, including airport time slot allocation
[19], distributed query optimization [23] and transportation
service procurement [22].

Recent years have brought increased attention to the prob-
lems that arise in two-sided markets, in which the set of
agents is composed of buying and selling agents. As op-
posed to one-sided auctions where the auctioneer initially
holds the commodity or the commodities and is not con-
sidered strategic, in the two-sided market the commodities
are initially held by the set of selling agents, who have costs
for the commodities they hold and are expected to behave
strategically. The market maker’s role is to match buying
agents with selling agents as well as to determine what price
each matched buying agent pays the market and what price
the market pays each selling agent.

The cornerstone method in auction theory for high-SWF
(efficient) allocation and incentivizing agents’ truth-telling
strategy is the Vickrey-Clarke-Groves (VCG) mechanism [25,
6, 13]. In addition to motivating agents to report their true
input VCG is also individually rational (IR) in many set-
tings. IR requires that no agent can lose by participating
in the mechanism. In two-sided markets, a further impor-
tant requirement is budget-balance (BB) meaning that the
market does not end up with a loss. VCG is not BB except
in special cases [14]. It is well known from [18] that maxi-
mizing SWF while maintaining IR and truthfulness perforce
runs a deficit (is not BB) even in the bilateral trade setting,
i.e., when there are just two agents trading with each other.
Well-known circumventions of [18]’s impossibility in the set-
ting of double sided auctions with a single commodity (and
unit demand and supply) are [15, 16], which relax efficiency
in return for maintaining the other properties of truthful-
ness, IR and BB. Other circumventions of [18]’s impossi-
bility include relaxing determinism in addition to efficiency,
i.e., are randomized solutions some in the simple setting of
a single-commodity single-unit market [21] and some in the
extended setting of combinatorial market [3]. [7, 11, 27] cir-
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cumvents [18] in the setting of single-commodity single-unit,
multi-commodity single-unit and single-commodity multi-
unit respectively.

The growing interest in two-sided markets is motivated
by the numerous examples of applications such as stock ex-
changes, online advertising exchanges, pollution rights and
the recent US FCC effort to reallocate electromagnetic spec-
trum from UHF television broadcasting to use for wireless
broadband services. Many of these examples represent dy-
namic and uncertain environments, and thus require dy-
namic markets where agents arrive over time. Moreover,
the examples emphasize the need for solutions that involve
multiple commodities and agents that can buy and sell the
multiplicity of those commodities, i.e., two-sided combinato-
rial markets as opposed to unit demand/supply. On the one
hand due to the complex design requirements of such two-
sided combinatorial markets, practical solutions for those
dynamic environments such as the recent US incentive auc-
tions circumvent the dynamic aspect of the problem by em-
ploying an iterative process [17]. And on the other hand,
to our knowledge, the theoretical solutions of dynamic two-
sided markets in the literature focuses on a single commodity
for sale and agents ask/offer one unit of the commodity [4,
2].

Wurman et al. [26] presented a dynamic two-sided solu-
tion incentivizing truthful reporting from either the buyers
or the sellers but not simultaneously from both. A differ-
ent dynamic solution given by Blum et al. [2] maximizes the
SWF of buyers and non-selling sellers in the single commod-
ity unit demand setting. Finally, Bredin et al. [4] present
a truthful dynamic double-sided auction that is constructed
from a truthful offline double-sided auction rule also in the
single commodity unit demand setting.

In this paper we present and evaluate a general solution
that dynamically matches agents in a two-sided combinato-
rial market. Multiple commodities, each with multiple units,
are bought and sold in different bundles by agents that ar-
rive over time. Our solution, DYCOM, provides the first
dynamic two-sided combinatorial market that allows truth-
ful and IR behavior for both buying and selling agents, keeps
the market BB and approximates SWF efficiency.

The main idea behind our DYCOM solution is the trans-
formation of the two-sided combinatorial market into a one-
sided combinatorial auction. The transformation of the mar-
ket into an auction makes use of a novel principle: each sell-
ing agent is a buying agent of his own commodities. Thus
all our dynamic market’s selling agents become virtual buy-
ing agents who buy in a dynamic one-sided combinatorial
auction along with our market’s actual buying agents. DY-
COM is a primal-dual sequential posted-price mechanism
that builds upon a combinatorial auction studied in the lit-
erature [5]. However, DYCOM incorporates solutions to the
design challenges imposed by the simulation process such as
higher initial price constraints and payment computations
for virtual buying agents. Much like other sequential posted-
price mechanisms DYCOM does not require any assumption
on agents’ arrival order.

To validate the performance of our suggested solution, we
experimentally tested the SWF efficiency of DYCOM un-
der variety of agents’ bid distributions and agents’ demand
against a number of benchmarks. Some of the benchmarks
were dynamic and some were non-dynamic. The most no-
table of DYCOM’s results were when compared with:

• An optimal non-dynamic and non-truthful allocation
algorithm (simplex), where DYCOM’s approximation
approaches 0.5 of the market SWF.

• McAfee [16]’s non-dynamic single commodity unit de-
mand market. Here DYCOM’s approximation approaches
1 though DYCOM is tailored for a completely general
combinatorial setting and it is dynamic unlike [16] and
as such it was not expected to perform as well as [16].

• [3]’s randomized non-dynamic combinatorial market.
In this comparison DYCOM’s approximation approaches
10 times that of [3]’s SWF in large markets even though
DYCOM is deterministic and dynamic unlike [3] and
as such it was not expected to perform better than [3].

The paper’s contributions are threefold. First, we pro-
vide the first dynamic two-sided combinatorial market that
is truthful, IR and BB for all agents that approximates
SWF efficiency. Second, our experimental tests show that
our dynamic two-sided combinatorial market is a general
and practical platform as it performs as well as the known
McAfee [16]’s non-dynamic single-commodity unit-demand
two-sided market and performs better than the randomized
non-dynamic combinatorial market with limited valuations
and cost domains [3]. Third, our two-sided combinatorial
market transformation into a one-sided combinatorial auc-
tion is of independent interest for future work on simplifying
other forms of multi-sided exchanges to the well studied form
of one-sided auctions.

2. PRELIMINARIES
Consider a dynamic market model in which agents arrive

over time. Agents are either buyers or sellers interested in
trading multiple units of multiple commodities in bundles.
Commodities are sold by selling agents and allocated to buy-
ing agents irrevocably.

Let m be the total number of non-identical commodities
offered by all selling agents accumulatively. Each commodity
j ∈ {1, . . . ,m} has aj identical units (or copies). Though
in our model selling agents arrive dynamically we assume
that aj is a priori known to the market. The assumption
that the number of a commodity’s units is a priori known to
the market was made by almost all previous literature on dy-
namic markets see ([2, 7, 26])1. There are practical examples
where the quantity of commodities expected in the market is
a priori known to the market maker. For instance consider
a securities Exchange with no short sells. The number of
shares of each stock issued by its company is pre-known to
the exchange yet buyers and sellers arrive dynamically. An-
other example where the quantity of commodities expected
in the market is pre-known, though without dynamic ar-
rivals of buyers and sellers, are the newly run FCC incentive
auctions where the broadcast frequencies are pre-known to
the government.

A bundle of commodities, s, is defined as vector (ds,1...ds,m),
where 0 ≤ ds,j ≤ aj is the number of units of commodity j in
the bundle. We say that s ≤ s′ if the vector of s is at most
the vector of s′ coordinate-wise. There are l agents who
are interested in selling commodities. Each selling agent t
has a bundle of commodities St = (dSt,1...dSt,m) he initially

1except for the work by [4] which assumed an alternative
assumption of agents bounded patience.
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owns and a cost function ct that assigns a non-negative cost
for each bundle st ≤ St of commodities, ct : {0...St1} ×
... × {0...Stm} → R+ and any other bundle is assigned
zero. We denote by c a vector of declared costs c1, ..., cl
and by c−t a vector of declared costs c1, ..., ct−1, ct+1, ..., cl.
There are n agents who are interested in buying commodi-
ties. Each buying agent i has a valuation function vi that
assigns a non-negative value for each bundle of commodi-
ties, vi : {0...a1} × ... × {0...am} → R+. We denote by v a
vector of declared valuations v1, ..., vn and by v−i a vector
of declared valuations v1, ..., vi−1, vi+1, ..., vn. For simplicity
of notations we denote vi(s) by vi,s and ct(s) by ct,s. We
assume the standard assumption in combinatorial auctions
literature that commodities can be perishable and the valua-
tion function is monotonic non-decreasing. That is, for each
buying agent i and s ≤ s′, vi,s ≤ vi,s′ and for each selling
agent t and s ≤ s′, ct,s ≤ ct,s′ . Also, for any i, vi(∅) = 0
and for any t, ct(∅) = 0 (normalization).

Bundle s is denoted as feasible bundle for buying agent
i (selling agent t) if there is no bundle s′ ≤ s, vi,s′ = vi,s
(ct,s′ = ci,s). Intuitively, bundles that are not feasible con-
tain commodities that are perishable. Let S(i) (S(t)) be the
set of feasible bundles for buying agent i (selling agent t).
We assume that there are known bounds
1 < Θ ≤ min{i,j, si∈S(i),st∈S(t)}

{
aj
dst,j

,
aj
dsi,j

}
and

θ ≥ max{i,j, si∈S(i),st∈S(t)}

{
aj
dst,j

,
aj
dsi,j

}
. That is, for each

bundle si ∈ S(i) and st ∈ S(t) and commodity j, the num-
ber of commodities j in the bundle, dsi,j (dst,j), is at least
1/θ and at most 1/Θ fraction of the total number of com-
modities j, aj . The θ,Θ demand bounds are parameters in
our SWF approximation ratio, as will be shown in section
3. The SWF approximation ratio improves as the agents’
demand decreases relative to the supply of commodities in
the market. Intuitively the effect of the above parameters
can be understood as improving the algorithm’s performance
when each participant represents a bounded share of the de-
mand in the market. Accordingly, the algorithm performs
better for large markets than thin markets as will be seen in
section 4. This characteristic makes the algorithm practical
and desirable for use in large markets.

Our agents are assumed to have a demand (supply) or-
acle representation of their valuations (costs) (a common
assumption in the combinatorial auction literature e.g. [10]
for valuation oracle).

Definition 2.1. (demand (supply) oracle) For every buy-
ing agent i (selling agent t), a demand oracle for valuation

(cost) v (c) accepts a vector of commodity prices (p
(1)
i ...p

(m)
i )

as input and outputs the demand for (supply of) the com-
modities at these prices, i.e. it outputs the vector (ds,1, ..., ds,m),
s ∈ S(i) (s ∈ S(t)) that maximizes i’s utility maxs,s∈S(i) vi,s−∑m
j=1 ds,jp

(j)
i (t’s utility maxs,s∈S(t)

∑m
j=1 ds,jp

(j)
t − ct,s).

In a concrete market implementation the valuations (costs)
will be given in some “bidding language” and our market
will operate in polynomial time as long as the bidding lan-
guage allows polynomial-time computation of answers to de-
mand (supply) oracle queries. Note that these types of oracle
queries can be easily answered for the case where each agent
puts forward an arbitrary list of mutually exclusive bids for
packages.

Let A =
∑m
j=1 aj be the total number of commodities.

Let smax = maxi,t,(s∈S(i)∧s∈S(t)){
∑m
j=1 ds,j} be the largest

bundle requested (offered) in the market, note that, smax ≤
A and that we do not assume that smax is pre-known.

An allocation for a two-sided market can be represented
as a pair of vectors (X,Y ) = ((X1, ..., Xn), (Y1, ..., Yl)) such
that the sum of the union of X1, ..., Xn, Y1, ...Yl is A, and
X1, ...Xn, Y1, ..., Yl are mutually non-intersecting. The goal
of the market maker is to dynamically match the agents
such that each buying agent i interested in buying a bundle
is allocated with available commodities of selling agents t, so
as to maximize

∑n
i=1 vi(Xi) +

∑l
t=1 ct(∪s ∈ S(t)\Yt). This

goal is referred to as SWF or efficiency (of trading buyers
and remaining commodities).

We transform the two-sided combinatorial market into a
one-sided combinatorial auction where selling agents are re-
duced to virtual buying agents of their own offered commodi-
ties. The one-sided combinatorial auction used to host the
two-sided combinatorial market is inspired by [5]’s primal
dual combinatorial auction. The goal of the auctioneer in
the one-sided combinatorial auction is to partition the avail-
able commodities by allocating each buying agent i a bundle
si, so as to maximize

∑n
i=1 vi(si). This goal is referred to

as maximizing SWF (or efficiency).
We say that a mechanism is truthful if reporting the true

value and cost is a dominant strategy for each agent regard-
less of the other agents’ reports.

We say that a mechanism is individually rational (IR) if
no agent can receive a negative utility by participating.

We say that a market is budget balanced (BB) if the sum
of the prices paid by the buying agents is at least as high as
the sum of the prices paid to the selling agents.

2.1 The one-sided combinatorial auction for-
mulation as a linear programming prob-
lem

Our proposed one-sided combinatorial mechanism is based
on solving a linear relaxation of the problem in a dynamic
fashion. Let us first introduce an integer formulation for the
one-sided combinatorial mechanism problem.

Let yi,s ∈ {0, 1} be a variable indicating that bundle s
is allocated to buying agent i. Constraint (1) suggests that
each buying agent is allocated at most one bundle. Con-
straint (2) suggests that the number of units sold from com-
modity j is at most aj .

We relax the integrality constraints yi,s ∈ {0, 1} in order
to achieve the below linear program formulation that upper
bounds the maximum SWF.

[Dual] max
∑n
i=1

∑
s∈S(i) vi,syi,s∑

s∈S(i) yi,s ≤ 1∀1 ≤ i ≤ n (1)

1
aj

∑n
i=1

∑
s∈S(i) ds,jyi,s ≤ 1∀1 ≤ j ≤ m (2)

yi,s ≥ 0∀1 ≤ i ≤ n, s ∈ S(i)

Note that the number of variables may be exponential.
However, our algorithm never solves this linear formulation
explicitly. We refer to this formulation as the dual pro-
gram [Dual]. To obtain the corresponding primal program
[Primal], we define variable zi for each buying agent i, and
variable xj for each commodity j. The primal linear formu-
lation is as follows.
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[Primal] min
∑n
i=1 zi +

∑m
j=1 xj

zi +
∑m
j=1

ds,j
aj
xj ≥ vi,s∀1 ≤ i ≤ n, s ∈ S(i) (3)

zi, xj ≥ 0∀1 ≤ i ≤ n, 1 ≤ j ≤ m

Note that the dual problem described above is not the
integer formulation of the traditional combinatorial auction
problem but rather a linear programming formulation that
upper bounds the maximum social welfare and is never solved
explicitly by the solution we present in the paper. Our so-
lution solves the primal problem presented and therefore it
is presented as primal.

3. DYCOM AND THE SIMULATION OF
TWO-SIDED COMBINATORIAL MARKET
AS A ONE-SIDED

In this section we first discuss how to transform a two-
sided combinatorial market into a one-sided combinatorial
auction such that one can conclude the allocation and prices
of the buying agents as well as the allocation of the selling
agents and the payments they receive. We then present DY-
COM and prove its economic properties and approximation.

Consider a dynamic market in which agents arrive over
time and prices increase with demand (we make the common
assumption in online mechanism design literature that the
order of arrival is arbitrary and agents have no control over
it. This assumption can also be found in [1], [5] and many
citations within.). Agents are either buyers or sellers which
arrive once and are faced with a vector of prices. Agents can
demand/supply a bundle of their choice in the given prices
immediately or leave permanently. Selling agents that sup-
ply a bundle stay at the market until their supply is sold (or
return to them in market closing time). For every arriving
agent t which is interested in selling bundles of commodities
S(t) and initially owns commodities St, we construct a vir-
tual agent i that is interested in buying some of selling agent
t’s commodities. In order to simulate a virtual buying agent
i that represents selling agent t’s interests we need to allow
virtual agent i to buy the commodities that are not beneficial
for selling agent t to sell. For example if selling agent t has
one unit of commodity 1 and one unit of commodity 2, his
cost function is ct,{1} = 10, ct,{2} = 5, ct,{1,2} = 14 and he is

presented with prices p
(1)
t = 8, p

(2)
t = 7 then he is not inter-

ested in selling commodity 1. Therefore the virtual buying
agent that represents him will buy commodity 1. Since all
that we have access to is the agent’s demand(supply) oracle,
in order to simulate selling agent t as a buying agent of t’s
commodities we query each selling agent t’s supply oracle as
he arrives and allocate the created virtual buying agent with
the commodities St \ st where st is the bundle answered by
t’s supply oracle. Selling agent t’s commodities that were
not bought by its virtual buying agent are offered to the
“regular” (non virtual) buying agents that arrive in the time
periods that follow.

We assume a priori knowledge of the values vmax and
cmin such that vmax ≥ maxi,s{vi,s}, cmin ≤ mint,s{ct,s} and
vmax > cmin. It is easy to verify that vmax and cmin knowl-
edge is necessary in order to obtain non-trivial approxima-
tion ratio. First we consider the a priori knowledge of vmax.
If vmax is unknown to the algorithm, then any determin-
istic algorithm has an unbounded efficiency approximation

ratio even if there is only a single commodity (with multiple
units). To see this, consider selling agents with cost zero for
all commodities and consider the following simple adversar-
ial sequence. In each iteration the next buying agent would
like a single unit of the (single) commodity and his bid is the
smallest value of the remaining buying agents that still need
to arrive. If there is no such value then certainly the algo-
rithm has no bounded efficiency. Otherwise, the algorithm
always allocates all units, and after allocating all units then,
the next buying agent has value that is very large compared
to all previous bids. Similar argument can be made for the
necessity of cmin.

As the assumption of a priori knowledge of vmax and cmin

is necessary in order to obtain a non-trivial approximation
all previous literature on dynamic markets even ones with
single commodity assume similar a priori knowledge of the
max, min values (see [2, 7, 26]). The only previous work on
dynamic markets that does not assume a similar assumption
to the max, min values, is the work by [4]. However [4]’s
work assumes an alternative assumption: agents bounded
patience, that without it no reasonable efficiency can be
achieved.

Let simax = maxs|yi,s=1{
∑m
j=1 ds,j} be the maximal size

of any bundle allocated by DYCOM until agent i’s arrival

(including i) and let ψ =
ln(1+simax(vmax−cmin))

1−1/Θ
.

DYCOM is composed of initialization stage (the first two
for loops) and a running loop that handles dynamically ar-
riving agents. The loop for the arriving agents has 5 steps.

• Step (1) update the prices of all commodities for the
new agent that arrived.

• Step (2) query the arriving agent for his demand or
supply (depending on the type of agent) of commodi-
ties given the current prices.

• Step (3) handle selling agents by converting each ar-
riving selling agent in to a virtual buying agent. The
virtual buying agent is configured to buy the commodi-
ties that the selling agent is better off keeping and not
selling given the current market prices, i.e., his total
commodities bundle Si minus the bundle of commodi-
ties that are most beneficial for him to sell according to
his supply oracle si. Payment to the arriving agent is
made every time his commodities are bought by future
arriving buying agents. The payments are computed
according to the prices that were presented to the sell-
ing agent at his arrival2.

• Step (4) handle buying agents by allocating each ar-
riving buying agent his requested bundle at current
prices and charging him according to those prices. In
this step DYCOM pays selling agents for commodi-
ties that were bought by the currently arriving buying
agent.

2Note that the IR property is not affected by the later pay-
ments since if units of commodities in si are not sold in the
market by its closing time then those units can be returned
to seller i. Also note that similarly to [4] we could have
changed our algorithm to pay the arriving selling agents in-
stantaneously and have the market “hold” the commodities
until bought, however such approach will lead to market
deficits during the market run as occurs in [4]’s market.
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• Step (5) updates the parameters given the new allo-
cation and in particular updates the primal parameter
xij for the next arriving agent’s prices. The update

formula, xi+1
j , is motivated by the idea that no com-

modity j is allocated more than aj times. This can be
achieved by increasing the price of every commodity j
such that after the allocation of at least (1 − 1/Θ)aj
units of the commodity the price reaches the level of
vmax. At this high price no agent can afford to buy the
commodity. Meaning, no more units of the commod-
ity will be sold after the price reaches vmax. As each
allocation of a commodity to an agent is at most 1/Θ
of the commodity, no more than aj allocations of the
commodity can occur in total.

DYCOM

For each commodity j set x1
j = cminaj , , s1

max = 0

For each buying and selling agent 1 ≤ i ≤ n+ l
set zi = 0, yi,s = 0

For each arriving agent i = 1...n+ l

(1)for each commodity j set the price p
(j)
i = xij/aj

(2)input current prices p
(1)
i ...p

(m)
i to agent i’s

demand/supply oracle and
output demand/supply bundle ds,1...ds,m, si ∈ S(i)

(3)if i is a selling agent then construct a
virtual buying agent i by:
allocating him the bundle s = Si \ si
paying him the future payment determine at (4)
query i on ci,s, set vi,s = ci,s

(4)if i is a buying agent
allocate i with bundle s = si

charge i pi =
∑m
j=1 ds,jp

(j)
i

query i on vi,s
for k = 1...i− 1

for every unit of commodity j
of virtual buying agent (i− k)
that is allocated to agent i in ds,j ,

pay agent (i− k) the price p
(j)
i−k

(5)Update:
yi,s = 1, zi = vi,s, recompute simax

for all j: xi+1
j ← xij exp

(
ds,jyi,s
aj

ψ
)

+aj
(

1
simax

− cmin

)(
exp

(
ds,jyi,s
aj

ψ
)
− 1
)

3.1 Analysis
In this section we analyze the performance of the DYCOM

solution as a truthful, IR, BB and SWF maximizing market.
Our analysis first shows that the market is truthful and IR
both for buying and selling agents and does not run a deficit.
Then we focus on the analysis of the SWF approximation
ratio.

Lemma 3.1. DYCOM is truthful and IR for buying and
selling agents and is a BB market.

Proof. We start by claiming that DYCOM is truthful.
Since agents have no control over their arrival order they can
not affect the commodities prices they are faced with. Never-
theless agents can potentially misreport their demand/supply
bundle or can misreport its value/cost. We first claim the

buying agents are weakly better off reporting their true de-
mand bundle and their true value for it. Assume for the
contrary that a buying agent requested a bundle s′ that is
not the bundle s that was recommended to him by his de-
mand oracle. As the demand oracle outputs the bundle that
maximizes the agent’s utility given the price vector, when
allocated s′, the agent can not gain a higher utility than
s. Thus the buying agent is (weakly) better off reporting
his true demand bundle. Any declaration of s’s value can
not change the allocation (and therefore can not change the
buying agent’s utility) as the allocation is determined by the
bundle demand. Moreover buying agent’s lie will be imme-
diately exposed if he reports the value of s such that it is
less than the total price of the bundle s as his demand oracle
is utility maximizing.

We continue by claiming that the selling agents are weakly
better off by reporting their true supply bundle and their
true cost for the bundle. Assume to the contrary that a
selling agent t requested a bundle s′ that is not the bundle
s that was recommended to him by his supply oracle. First
assume the case that there exists a unit of commodity j
that is in s however it is not in s′. That means that the
unit of commodity j will be allocated to the virtual buying
agent constructed of selling agent t and t will not be paid
for it. However we know that given the prices presented to
t and his supply oracle, his utility will increase if we will
not keep the unit of commodity j and will get paid for it,
in its presented price. Thus t is better of requesting bundle
s. Now assume that there exists a unit of commodity j that
is in s′ however it is not in s. That means that the unit
of commodity j will not be allocated to the virtual buying
agent constructed of selling agent t and t will be paid for
it. However since selling agent t’s supply oracle is utility
maximizing, we know that t’s utility will increase (or at
lease will not decrease) by not selling the unit of commodity
j and not get paid for it. Thus the selling agent is (weakly)
better off reporting his true supply bundle. Any declaration
of s’s cost can not change the allocation (and therefore can
not change the selling agent’s utility) as the allocation is
determined by the supply of bundles. Moreover, a selling
agent’s lie will be immediately exposed if he reports the cost
of s such that it is more than the total price of the bundle s
as his supply oracle is utility maximizing.

We continue by claiming that DYCOM is IR. For buy-
ing agents DYCOM is IR since a buying agent only pays
for units of commodities he is allocated and his payment is
computed based on the commodities price vector presented
to him. As each buying agent’s demand oracle is utility
maximizing no allocation will result in a negative utility for
a buying agent. For selling agents DYCOM is IR since a
selling agent only gets paid for units of commodities that
his virtual buying agent is not allocated (which is exactly
his supply bundle) and the mechanism’s payment to him is
computed based on the commodities price vector presented
to him. As each selling agent’s supply oracle is utility max-
imizing no sell will result in a negative utility for a selling
agent.

Now we claim that DYCOM does not run a deficit, i.e.,
DYCOM is BB. Since selling agents get paid according to the
commodities prices that are presented when they arrive and
buying agents pay according to the current prices they see,
and since prices are non-decreasing between arrival times,
every buying agent payment on every unit of a commodity

5



will be at least as high as the payment for its selling agent.

We continue by analyzing the SWF approximation ratio.

Lemma 3.2. DYCOM approximates the SWF of the trad-
ing buying agent and the remaining commodities with in

O(Θ[(1 + smax(vmax − cmin))
1

Θ−1 − 1] + θ).

Before we present the proof of our approximation claim we
like to compare DYCOM’s approximation ratio with that of
the other known combinatorial two sided market by [3]. [3]’s
approximation for the SWF of the trading buying agent and
the remaining commodities in a randomized mechanism and
if all valuations and costs are subadditive3 is 8Hsmax where
Hsmax is the smax harmonic number. Their mechanism as-
sumes distributional knowledge of the median value of each
selling agent’s Θ, θ bounds. Figure 1 shows that for large
markets DYCOM achieves better theoretical approximation
ration than [3] even though [3]’s solution is randomized non-
dynamic and the approximation ration is only guaranteed
for the cases where valuations and costs are subadditive and
not generated for the general case as ours4.

Proof. In order to show DYCOM’s SWF of the trading
buying agent and the remaining commodities’ approxima-
tion ratio, it is enough to show the SWF approximation
ratio for buying and virtual buying trading agents as the
last ones are allocated the remaining commodities.

Let ∆Primal be the change in the value of the primal so-
lution and let ∆Dual be the change in the value of the dual
solution. After each agent’s arrival DYCOM updates a pri-
mal solution [Primal] and a dual solution [Dual]. In order
to show the approximation ratio we need to prove that (i)
the primal solution produced by DYCOM is feasible. (ii) the
dual solution output by DYCOM is feasible. (iii) after each
agent arrival, ∆Primal is at most w times ∆Dual, where w
would have been our desired approximation ratio if both the
primal and dual solutions were initially 0. In that case we
would have achieved an approximation of at least 1/w times
the feasible primal solution we produce. Since our primal so-
lution is not initially 0 but

∑m
j=1 cminaj , we need to reduce

φ =
∑m
j=1 cminaj from [Primal] and we conclude that our

approximation is at least 1

w+ φ
[Dual]

times the feasible primal

solution we produce. The lemma’s claim follows directly by
weak duality.

Primal feasibility: It is easy to verify that the primal so-
lution produced by DYCOM satisfies all primal constraints.
We omit the details due to space limitations.

Primal-Dual relation: We need to show the relations of
∆Primal and ∆Dual created by the arrival of agent i. De-

note ∆xj = xi+1
j − xij . Let q =

(
exp

(
ds,j
aj
ψ
)
− 1
)

and let

3Subadditive - roughly speaking, the value of bundle A plus
the value of bundle B is greater than the value of their union.
4Figure 1 shows its finding under subadditive valuations and
costs. When we generate data removing this assumption
DYCOM gives even better theoretical guarantees for the
presented large markets. This graph was omitted due to
page limitations

Figure 1: DYCOM’s theoretical SWF approxima-
tion ratio under different bounds of agents’ de-
mand/supply level with respect to the overall supply
of commodities in the market vs. Blumrosen and
Dobzinski 2014 theoretical SWF approximation ra-
tio. When demand/supply of each agent is bounded
by at least 1/400 of total market units DYCOM’s
theoretical SWF approximation ratio is better than
Blumrosen and Dobzinski 2014.

q′ =
(
exp

(
ψ
Θ

)
− 1
)

for the ease of presentation.

∆ Primal = zi +

m∑
j=1

∆xj = vi,s

+

m∑
j=1

[
xj

(
exp

(
ds,j
aj

ψ

)
− 1

)
+

(
aj
simax

− ajcmin

)
q

]

= vi,s +

m∑
j=1

(
xj ·

ds,j
aj

+
ds,j
simax

− ds,jcmin

)
· aj
ds,j

q

≤ vi,s +

m∑
j=1

(
xj ·

ds,j
aj

+
ds,j
simax

− ds,jcmin

)
·Θq′ (4)

≤ vi,s + (vi,s + 1− cmin) ·Θq′ (5)

≤ vi,s + (vi,s + 1) ·Θq′ (6)

≤
(
1 + 2Θq′

)
∆Dual (7)

Inequality (4) follows as for every x, ψ ≥ 1 x(e
ψ
x −1) is mono-

tonic decreasing. Inequality (5) follows as
∑m
j=1

ds,j
simax

≤ 1

(simax is the size of the maximal bundle allocated until cur-

rent agent’s arrival) and as
∑m
j=1 ds,j

xj
aj

=
∑m
j=1 ds,jp

(j)
i ≤

vi,s. Also, since the minimal size allocated bundle is a single
unit of one item type then

∑m
j=1 ds,j ≥ 1. Inequality (6)

follows since cmin > 0. Finally, Inequality (7) follows since
∆Dual = vi,s. Note that simax and ψ are non-decreasing
throughout the agents’ arrivals. Last but not least is bound-
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ing from above φ/[Dual].

φ

[Dual]
=

∑m
j=1 cminaj∑n
i=1 vi,syi,s

≤
∑m
j=1 cminaj

vi,s
≤
∑m
j=1 x

i
j

vi,s
(8)

≤

∑m
j=1

(
xij

ds,j
aj

)
· aj
ds,j

vi,s

≤

∑m
j=1 x

i
j
ds,j
aj
· θ

vi,s
≤ θ (9)

Inequality (9) follows since
∑m
j=1 x

i
j
ds,j
aj
≤ vi,s.

Substituting ψ and simax we achieve the approximation ra-
tio of:
1+2Θq′+θ ≤ 1+2Θ

(
exp

(
ln(1+smax(vmax−cmin))

Θ−1

)
− 1
)

+θ =

O(Θ[(1 + smax(vmax − cmin))
1

Θ−1 − 1] + θ). Dual feasibility:
DYCOM’s solution is the solution produced by the dual so-
lution. In order to prove dual feasibility we need to show
that no agent is allocated more than a single bundle and
that no commodity j is allocated more than aj times. Since
each arriving agent is asked to declare a bundle of interest
through a demand oracle and the demand oracle outputs a
single bundle as an out come, the single bundle constraint
is satisfied. In order to prove the commodity constraint we
prove that for every commodity j the price reaches the level
of vmax after the allocation of at least (1 − 1/Θ)aj units
of the commodity. At the resulting high price no agent
can afford to buy the commodity any more. Meaning, no
more units of the commodity will be sold after the price
reached the vmax level . As each allocation of a commod-
ity for an agent is at most 1/Θ of the commodity, no more
than aj allocations of the commodity can occur in total. We
look for a price expression such that when agent g arrives
1
aj

∑g−1
i=1

∑
s∈S(i) ds,jyi,s ≥ 1 − 1/Θ, then the price is at

least vmax. We show that the price computed by DYCOM
is such. We prove by induction that the price of one unit of
commodity j at the arrival time of agent g is as follows:

Let Q =
ln(1+sgmax(vmax−cmin))

(1−1/Θ)aj
for the ease of presentation

and let sgmax is the maximal bundle allocated by DYCA up
to the arrival of agent g.

p
(j)
g =

xgj
aj
≥

1
s
g
max

exp

Q · g−1∑
i=1

∑
s∈S(i)

ds,jyi,s

− 1

+ cmin(10)

We omit the details of the induction proof due to space
limitations.

4. EXPERIMENTAL RESULTS
We conduct an empirical evaluation of our suggested solu-

tion’s performance against a range of known market bench-
marks. We compare the allocative SWF efficiency of buying
agents and unallocated commodities of DYCOM with the
known non-dynamic single commodity unit-demand solution

by [16] (Figure 2) and the dynamic single-commodity unit-
demand solution by [2] (Figure 5)5. We also compare the
allocative SWF efficiency DYCOM’s buying agents and un-
allocated commodities with [3]’s randomized non-dynamic
combinatorial market. (Figure 6)6. Our experimental re-
sults show that though DYCOM is dynamic, combinatorial
and more general it can perform in practice as well as the
above known solutions that were tailored for limited mar-
ket settings and perform even better for some of the above
known solutions for large markets. While [2]’s solution’s per-
formance mainly depends on the size of the valuation/cost
range in the market (which may be large in an electronic
global market), our DYCOM solution performs best on large
markets where no buying or selling agents control a large
portion of the demand or supply (See Figure 5). As was seen
in Subsection 3.1 Figure 1 DYCOM theoretically performs
better than [3] in large markets where the agents’ values
and costs are taken over a large spread and each agent’s de-
mand/supply is bounded by at least 1/400 of total market
units. Interestingly the performance gap improves favor-
ably towards DYCOM in the practical comparison. Figure
6 shows that even if each agent’s demand/supply is bounded
by at least 1/200 of total market units, DYCOM performs
better. Figure 6 shows its finding under subadditive val-
uations and costs. When we generate date removing this
assumption DYCOM performs even better with respect to
[3] under the same size market’s demand/supply bounds.
The graph was omitted due to page limitations.

All results presented were averaged over 1000 trials. The
comparisons with [16, 2] were performed on a market with
800 units of a commodity. In all the experiments we found
minimal to no qualitative differences between the use of dif-
ferent distributions. We also compared DYCOM’s practical
performance with that of the theoretical results for multi-
ple commodities (Figure 3 and Figure 4) and found that in
practice DYCOM’s SWF approximation ratio is improved
by an order of magnitude and converges to half the SWF of
an optimal non-dynamic combinatorial solution (simplex).
We note that the theoretical approximation ratio proven in
Subsection 3.1 converges to 0.06 in the runs we performed
(Figure 4).

5. CONCLUSION AND DISCUSSION
In this paper we present and evaluate DYCOM the first

dynamic two-sided combinatorial market that allows truthful
and IR behavior for both buying and selling agents, keeps
the market BB and approximates SWF efficiency. DYCOM
is a general solution that dynamically matches agents that
arrive over time in a two-sided combinatorial market with
multiple commodities of multiple units.

The main idea behind our DYCOM solution is a trans-
formation of the two-sided combinatorial market into a one-
sided combinatorial auction. The transformation of the mar-
ket into an auction makes use of a novel principle that each
selling agent is a buying agent of his own commodities. DY-
COM is a primal-dual sequential posted-price mechanism

5We omitted the comparison of DYCOM with [4]’s solution
as they conclude that their Chain mechanism performs es-
sentially the same as [2]’s mechanism in practice.
6the comparison is done such that all valuations and costs
are subadditive as [3] assumes such valuations and costs as
part of their approximation ratio bound.
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Figure 2: McAfee 2008’s SWF vs. DYCOM’s SWF.
DYCOM seems to converge to an identical SWF ap-
proximation ration as McAfee as the valuation and
cost range grows.

and its economic properties as well as its approximation
guarantee are theoretically proven.

To validate the performance of our DYCOM solution,
we experimentally tested the SWF efficiency of DYCOM
under variety of agents’ bid distributions and agents’ de-
mand against a number of benchmarks. Our experimental
tests show that DYCOM is a general and practical platform
as 1) it performs as well as the known McAfee [16]’s non
dynamic single-commodity unit-demand two-sided market
though DYCOM is tailored for a completely general com-
binatorial setting and it is dynamic unlike [16] and 2) it’s
approximation approaches 10 times that of [3]’s market’s
SWF in large markets though DYCOM is deterministic and
dynamic unlike [3] which is randomized and non dynamic.

In addition to providing a practical solution to the impor-
tant problem of a dynamic two-sided combinatorial market,
we believe that our two-sided combinatorial market trans-
formation into a one-sided combinatorial auction is of inde-
pendent interest for future work on reducing other forms of
multi-sided exchanges to the well studied form of one-sided
auctions.
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