
Practical Algorithms for Computing STV and Other
Multi-Round Voting Rules

Chunheng Jiang
Rensselaer Polytechnic Inst.
Dept. of Computer Science

jiangc4@rpi.edu

Sujoy Sikdar
Rensselaer Polytechnic Inst.
Dept. of Computer Science

sikdas@rpi.edu

Hejun Wang
Rensselaer Polytechnic Inst.
Dept. of Computer Science

wangj38@rpi.edu
Lirong Xia

Rensselaer Polytechnic Inst.
Dept. of Computer Science

xial@cs.rpi.edu

Zhibing Zhao
Rensselaer Polytechnic Inst.
Dept. of Computer Science

zhaoz6@rpi.edu

ABSTRACT
STV is one of the most commonly-used voting rules for group
decision-making, especially for political elections. However,
the literature is vague about which tie-breaking mechanism
should be used to eliminate alternatives. We propose the
first algorithms for computing co-winners under STV, each
of which corresponds to the winner under some tie-breaking
mechanism. This problem is known as parallel-universes-
tiebreaking (PUT)-STV, which is known to be NP-complete
to compute [9]. We conduct experiments on synthetic data
and Preflib data, and show that standard search algorithms
work much better than ILP. We also explore improvements
to the search algorithm with various features including prun-
ing, reduction, caching and sampling.

1. INTRODUCTION
Voting is one of the most practical and popular ways for

group decision-making, and is one of the major topics un-
der social choice theory. In the past decades there has been
a growing literature of computational social choice, which
studies computational aspects of social choice problems and
voting rules [4]. More recently, computational social choice,
in conjunction with algorithmic game theory, has been rec-
ognized as one of the eleven “fundamental methods and ap-
plication areas” of AI, according to The One Hundred Year
Study on Artificial Intelligence [14].

One of the earliest and the most fundamental problems in
computational social choice is the computation of winners of
well-studied voting rules. In fact, the widely-regarded first
paper in computational social choice, published by Bartholdi
et al. in 1989 [3], proved that Dodgson’s rule and the Kemeny
rule are NP-hard to compute. In addition, the Slater rule is
also NP-hard to compute [7].

For political elections, the plurality rule seems to be the
most common choice. Perhaps the second one is Single
Transferable Vote (STV), also known as instant runoff vot-
ing, alternative vote, or ranked choice voting. According to
wikipedia, STV is being used to elect senators in Australia,

Appears at: 4th Workshop on Exploring Beyond the Worst Case in
Computational Social Choice (EXPLORE 2017). Held as part of the Work-
shops at the 16th International Conference on Autonomous Agents and
Multiagent Systems. May 8th-9th, 2017. Sao Paulo, Brazil.

city councils in San Francisco (CA, USA) and Cambridge
(MA, USA), and has recently been approved to be used for
state and federal elections in Maine State in the USA.

A typical description of STV is the following. Suppose
there are m alternatives. In each round, we calculate the
plurality score for each remaining alternative, which is the
number of times it is ranked in the first place. The alterna-
tive with the smallest plurality score is eliminated. This has
the effect of transferring the ballots in support of the elim-
inated candidate to their corresponding favorite remaining
candidate. The last-standing alternative is the winner.

However, it was not clear from the literature which alter-
native should be eliminated when two or more alternatives
are tied for the last place in a round. For example, in the
San Francisco version, “a tie between two or more candidates
shall be resolved in accordance with State law” [1]. See [2]
for a list of commonly used variants of STV.

Random elimination and fixed-order tie-breaking are two
popular tie-breaking mechanisms for STV. Random elimina-
tion, as the name suggests, means that whenever multiple al-
ternatives are tied for the last place, the one to be eliminated
is chosen uniformly at random. Fixed-order tie-breaking is
characterized by a linear order O, called the priority order,
over the alternatives. Among all alternatives that are tied
for the last place in a certain round, the one that is ranked
lowest inO is eliminated. However, random elimination may
result in poor ex-post satisfaction due to randomness. For
fixed-order tie-breaking, it is unclear how the priority order
should be determined, and the existence of such an order
itself is unfair to the alternatives who are ranked low in the
priority order. Formally, STV with fixed-order tie-breaking
violates neutrality.

A natural solution is to output all alternatives who can
be made to win under some tie-breaking mechanism. This
multi-winner version of STV is called parallel-universes-
tiebreaking (PUT)-STV [9], and the same paper proved that
computing the winners under PUT-STV is NP-complete. To
the best of our knowledge, no practical algorithm exists for
computing PUT-STV.

NP-hardness of PUT-STV may not be a critical real issue
in political elections, as the frequency of holding such elec-
tions is low, the number of alternatives is often large, and
the chance of ties may not be high. The NP-hardness be-
comes more critical in low-stakes and more frequent group
decision-making scenarios, such as a group of friends us-

ing voting to decide the restaurant for dinner using an on-
line voting website, for example Pnyx [5], robovote.org, or
opra.tech. In such cases, in addition to computing all win-
ners as soon as possible, a more practical objective is to
design anytime algorithms for PUT-STV to encourage early
discovery of winners for better user experience and timely
decision-making.

To address this problem, we model the problem of deter-
mining the set of all co-winners under different run-off voting
rules as a search problem in AI. We compare standard AI
search algorithms together with various ways of improving
the performance w.r.t. the following measures of perfor-
mance.

• Time taken to discover all winners.

• Early discovery of a large portion of winners.

The first measure is important for high-stakes applications
such as political elections, because we want to make sure
that all winners are found. The second measure is impor-
tant for low-stakes applications where we are given limited
resources and must output as many winners as possible.

1.1 Our Contributions
We model the PUT-STV problem as a search problem and

propose various algorithms with different combinations of
features, including, pruning, reduction, cache, and sampling.
We employ the following techniques to improve the running
time of our search algorithms and to reduce the search space
explored:

• Pruning cuts all branches that do not lead to new
winners.

• Reduction tries to remove multiple alternatives in
each round.

• Caching stores visited states and prevents the same
states from being explored again.

• Sampling can be seen as a preprocessing step: we first
randomly sample multiple priority orders O and run
STV with fixed-order tie-breaking O to compute mul-
tiple winners to start with, before running the search
algorithm.

All algorithms are tested on three types of datasets: syn-
thetic datasets with i.i.d. rankings chosen uniformly at ran-
dom, i.i.d. single-peaked rankings, and Preflib data. Our
main discoveries are the following.

1. Standard search techniques from AI perform better
than ILP formulations (Section 5).

2. Caching helps increase performance. Unfortunately,
reductions and sampling are expensive to compute and
do not provide any benefit (Section 4).

3. For single-peaked preferences, ties are rare, and the
running time grows linearly with the size of the profile
(Section 4.3).

We also extend our algorithms to other multi-round vot-
ing rules, including Baldwin and Coombs, which use Borda
score and veto score in each round, respectively. Comput-
ing all winners under PUT-Baldwin or PUT-Coombs is NP-
hard [13].

1.2 Related Work and Discussions
There is a large literature on computational complexity of

winner determination under commonly-studied voting rules.
In particular, computing winners of the Kemeny rule has
attracted much attention from researchers in AI and theory,
see for example [8, 12] and references therein. However, STV
has been overlooked in the literature, despite its popularity.
We are not aware of previous work on practical algorithms
for PUT-STV.

In this paper we do not discuss how to choose a single
winner from the output of PUT-STV, such as the president,
when multiple alternatives are PUT-STV winners. This is
mostly up to the decision-maker’s choice. For high-stakes
applications, we believe that being able to identify potential
co-winners under STV w.r.t. different tie-breaking mecha-
nisms is important in itself, because it can detect and resolve
post-election dispute on tie-breaking mechanisms.

As discussed in the Introduction, we believe that the com-
putation of PUT-STV is important not only for political
elections, but also, perhaps more importantly, for every-
day group decision-making scenarios. In such cases anytime
algorithms are necessary, and our search algorithms natu-
rally have anytime guarantee—they can be terminated at
any time and output the winners that have been explored
so far. This is another advantage of our search algorithms
over ILP.

Our work is related to a recent work on computing winners
of commonly-studied voting rules by MapReduce [10], where
the authors proved that computing STV is P-complete. We
note that STV in [10] is with a fixed-order tie-breaking mech-
anism, while our paper focuses on PUT-STV. Our technique
can also be used to compute PUT-Ranked-Pairs, which is
NP-compete to compute [6]. See [11] for more discussions
on tie-breaking mechanisms in social choice.

2. PRELIMINARIES
An election is given by a pair E = (A,N) where A =
{a1, . . . , am} is a set of alternatives, and N = {1, . . . , n}
is a set of voters. Let L(A) denote the set of all possible
linear orders on A. A profile of n voters is a collection P =
(V1, . . . , Vn) of votes where for each i ≤ n, Vi ∈ L(A). The
set of all profiles on A is denoted by P. A voting rule r is a
function r : P → A that maps a profile to a unique winning
alternative.

A scoring function is identified by a collection of scoring
vectors M = (~s1, . . . , ~sm), where for each m̂, ~sm̂ is a vector
of non-negative numbers so that for every pair k, k′ ≤ m̂, if
k < k′, then ~sm̂(k) ≥ ~sm̂(k′) holds. The scoring function
given by M is denoted by scoreM : L(A) × A → Z≥0. For
any set of alternatives A, a linear order V ∈ L(A), and
any alternative c ranked at position k by V , scoreM (V, c) =
~s|A|(k).

We can view the scoring functions as being defined by
an m × m matrix, where the rows m̂ ≤ m correspond to
the scoring vector ~sm̂. As an example, the Borda scoring
function is defined by a left triangular matrix where each
m̂-th row is the vector (m̂− 1, m̂− 2 . . . , 0, . . . , 0) as shown
in Figure 1.

Example 1. Given the linear order V = 3 � 1 � 2 � 4
over the set of alternatives A = {a1, a2, a3, a4}, the Borda
scoring function assigns a score of 2 to alternative a1, de-
noted by scoreMBorda(V, 1) = 2 which corresponds to the

Figure 1: Matrix view of Borda and Veto scoring
functions.

(4, 2)-th element of the matrix MBorda in Figure 1.

In this paper we will consider the following voting rules.

2.1 Scoring run-off voting rules
A scoring run-off voting rule is defined by a scoring func-

tion f , and a priority function g : 2N → N and proceeds in
m− 1 rounds, where at each round an alternative with the
lowest score by f , ties being broken by g, is eliminated and
the agents’ votes are determined on the remaining alterna-
tives. The remaining alternative is declared as the winner.
In this paper, we are interested in the following well-studied
voting rules: 1. Single Transferable Vote (STV) where the
scoring function is the plurality function, 2. Coomb’s rule
defined by the veto function, and 3. Baldwin’s rule defined
by the Borda function.

Notice that the choice of priority function affects the out-
come of the voting rule. An alternative is a co-winner w.r.t.
a scoring run-off rule if there exists a priority function under
which the alternative is declared the winner. This leads to
the question: Can we determine the set of all possible win-
ning alternatives under a given scoring run-off voting rule?

Definition 1. (PUT-winners) Given a profile P , and
a voting rule r, we are asked to compute the set of all co-
winners.

An alternate view of run-off voting rules is that given a
profile, each voting rule corresponds to an order of eliminat-
ing the alternatives. Indeed, a brute force way to determine
the set of all co-winners is to explore every possible order in
which to eliminate alternatives one after the other.

This suggests two important avenues to pursue:

• Model the PUT-winners problem as a search prob-
lem, where starting at the state with all alternatives,
we expand the frontier by eliminating one alternative
at a time and explore the state space until we reach
a state where all but one alternative remains and the
corresponding alternative is a co-winner. Tracing the
paths to each reachable state gives us the correspond-
ing voting rules.

• Formulate the problem as an ILP where feasible solu-
tions correspond to the elimination of exactly one al-
ternative in each of m−1 rounds. We can test whether
an alternative is a co-winner by testing whether a so-
lution where the alternative is not eliminated in any
round is feasible.

3. MODELING VOTING RULES AS A
SEARCH PROBLEM

We can model the class of scoring run-off voting rules as
a search problem where:

• States: there are |2A|−m states, one for each possible
elimination of 0 to m− 1 alternatives.

– Start state: no alternatives have been eliminated.

• Successor function: maps the current state to the set
of states where an alternative with the lowest score is
eliminated.

• Output: a set of winning alternatives.

Beginning from the start state, we add states to the fron-
tier using the successor function. At each iteration, we
choose a state from the frontier to explore, and remove it
from the frontier. If all but one alternatives have been elim-
inated, add the remaining alternative to the set of winners.
Otherwise, use the successor function to add new states to
the frontier, one for each elimination of an alternative with
the lowest score.

We use depth first search and employ the following tech-
niques to improve the performance, and expand on them
later.

(i) pruning involves removing a state from the frontier if
all the remaining alternatives are known winners,

(ii) reduction, involves eliminating more than one alterna-
tive,

(iii) caching, involves maintaining a set of states that have
been explored, and

(iv) sampling, where we pre-compute a subset of the possi-
ble winners by running the run-off rule using a random
priority function.

Reduction Techniques A key idea in run-off voting rules
is to eliminate the alternative that has the least support
and run the election on the reduced problem with one less
alternative. However, there are conditions under which we
can remove more than one of the remaining alternatives.

For example, San Francisco STV uses the following con-
dition [1].

If the total number of votes of the two or more candidates
credited with the lowest number of votes is less than the num-
ber of votes credited to the candidate with the next highest
number of votes, those candidates with the lowest number
of votes shall be eliminated simultaneously and their votes
transferred to the next-ranked continuing candidate on each
ballot in a single counting operation.

For STV, we introduce the following generalization of the
above reduction technique as follows.

Reduction for STV. In any round, suppose there is an
alternative a whose plurality score is strictly larger than the
total plurality score of all other alternatives with strictly less
plurality scores, then those alternatives can be eliminated.

This condition guarantees that no matter what the elim-
ination order is for the alternatives whose plurality score is
strictly less than that of a, denoted by A, before alterna-
tives in A are eliminated, none of a or A − A ∪ {a} can be
eliminated.

Reduction for general multi-round rules. For gen-
eral multi-round rules we have a weaker reduction condition.

Given a collection of scoring vectors M = (~s1, . . . , ~sm), and
m∗ ≤ m and any k ≤ m∗ − 2, let DiffM (P,m∗, k) denote
the maximum reduction in the score difference between a
pair of alternatives (a, b), before and after k alternatives
have been eliminated in a ranking over m∗ alternatives.
DiffM (P,m∗, k) can be computed in polynomial time by enu-
merating all positions of a and b and all ways to eliminate k
alternatives (there are no more than k∗ ways, each of which
corresponds to the number of eliminated alternatives that
are ranked higher than a and b, between a and b, and after
a and b, respectively).

The condition for general multi-round rule with scoring
vectors M is: in any round, suppose there exists an alterna-
tive a with score s, let s′ denote the next highest score and
let A denote the alternatives whose scores are strictly less
than s. If s−s′ > n×DiffM (P,m∗, |A|), then all alternatives
in A can be eliminated.

It is not hard to verify the correctness of the two condi-
tions. The condition for STV is stronger than the generic
condition for computing PUT-STV.

Figure 2: Comparison of runtime with and without
caching on synthetic data for STV.

4. EXPERIMENTAL RESULTS: SEARCH
PROBLEM

Each configuration of our experimental setup involves cre-
ating datasets of elections with m alternatives and n voters.
For each dataset, we conducted experiments to evaluate the
performance of depth first search while varying four parame-
ters corresponding to whether the following techniques were
used to speedup the algorithm: (i) pruning (P) (ii) reduc-
tion (R) (iii) caching (C) (iv) sampling (S) , each of which is
set to 1 when the technique is used and set to 0 otherwise.
Several factors affect the runtime of the search algorithm.
At each iteration, we must add a branch for every alterna-
tive that is tied with the lowest score. It is easy to see how
the number of ties encountered during the running of the al-
gorithm leads to an increase in the size of the search space.
In order to mitigate the effect this may have on our results,
we decided to focus on the harder cases where there are ties.
The profiles in each dataset are marked as (i) easy if there
is a unique winner and every round has a unique alternative
with the lowest score, and (ii) hard if at some round of the
voting rule we encounter more than one alternative tied with
the lowest score. We will focus on results for the STV rule

Table 1: Summary of Preflib datasets.
All profiles Hard profiles

profiles 315 49
Avg. # alternatives 25.23 77.39
Max. # alternatives 242 242
Avg. # unique orders 28.1 6.37
Max. # unique orders 4926 30
Avg. # co-winners 1.1 1.67
Max. # co-winners 4 4

Table 2: Average number of co-winners for synthetic
datasets

n
m 10 20 30 40 50 60 70 80 90 100
10 2.89 2.04 1.88 1.78 1.72 1.64 1.57 1.58 1.53 1.53
20 4.65 4.64 4.2 3.8 3.27 3.07 2.95 2.8 2.81 2.63
30 5.58 7.24 7.4 6.95 6.51 5.85 5.84 5.33 5.05 5.06

on these hard cases.
Preflib Data In order to test the algorithms on real world

preference data, we identified profiles from Preflib that have
complete preferences. We found 349 profiles with complete
preferences, of which 49 or about 15% correspond to hard
cases (see Table 1). We find that in the real world data,
profiles with ties and multiple co-winners are rare.

Synthetic Data The synthetic datasets were generated
as follows: For each value of m and n, we generated profiles
with n i.i.d. rankings uniformly at random over m alterna-
tives. We then identified 1000 hard profiles to evaluate the
running time and number of nodes explored to discover a
given percentage of the co-winners (see Table 2).

4.1 Effect of Caching, Pruning and Reduction
Caching has the most noticeable impact on the running

time (see Figure 2). Since it is a natural improvement to ap-
ply to any search problem, we leave caching on in all future
experiments. The effect of pruning and applying the reduc-
tion on synthetic data is summarized in Figure 3 for the
STV rule. For every configuration of m ∈ {10, 20, 30} alter-
natives and n ∈ {10, 20, . . . , 100} voters, we generate 1000
hard profiles and report the average running time. When
we apply pruning, we see a small improvement in the run-
ning time (see Figure 3(a)). However, using reductions (see
Figure 3(b)) increases the average runtime and a closer in-
spection reveals that this was due to time spent in evaluating
whether the reduction can be applied.

Our experimental results for Preflib data are summarized
in Table 3. We found that for STV on real world datasets,
the maximum observed running time was only 0.06 seconds.

4.2 Early Discovery and the Effect of Sam-
pling

Our main results are focused on the more practical prob-
lem of early discovery where under a given constraint on
time or computational resources, we would like to be able to
discover as many of the co-winners as possible. We find that
the AI search algorithms do have an early discovery prop-
erty. A large percentage of the co-winners are found early
in the exploration. For m = 20, we find that close to 80% of
the co-winners are discovered after exploring just 200 states
and for m = 30, close to half of all the co-winners are dis-

Figure 3: The effect of pruning (a) and applying the reduction (b) on the running time of the search algorithm
on synthetic data for STV.

Table 3: Running time on Preflib data for STV.
Running time (10−4s) All profiles Hard profiles

average 3.35 1.42
minimum 0.39 0.52
maximum 648.93 4.65

covered after exploring only 100 states. Somewhat unsur-
prisingly even a relatively unsophisticated search strategy
without any improvements to reduce the search space other
than caching performs significantly better than attempting
to discover co-winners by breaking ties at random.

For comparison, we include the running time of the search
algorithms for Coomb’s rule and Baldwin’s rule in Figure 5.
Intuitively, we expect to see a lot more ties when computing
co-winners for Coomb’s rule and fewer ties for Baldwin’s rule
and we can observe its effect on the running times which are
larger than STV in general for Coomb’s rule and significantly
lower for Baldwin’s rule.

4.3 AI Search for Single Peaked Profiles
We generated profiles with i.i.d. single-peaked preferences

by following the algorithm developed in [15]. For each con-
figuration of m alternatives and n candidates, we identified
500 hard profiles from a set of randomly generated profiles.
Most of the profiles have either a unique winner or only few

Table 4: Average number of ties when running the
search algorithm to compute all STV co-winners.

Preferences m = 10 m = 20 m = 30
Random preferences 4.7255 76.574 1324.301

Single-peaked preferences 1.9354 3.7466 6.4802

co-winners (Figure 6(a)) and the median candidate (who is
the Condorcet winner) is most frequently the co-winner of
the election under the STV rule (Figure 6(b)).

We find that for a given number of candidates, the av-
erage running time of the search algorithm to compute all
co-winners for single peaked profiles is significantly faster
than the average time for profiles with random preferences
(Figure 7) and only grows linearly with the size of the pro-
file. For example, with m = 30 alternatives and profiles
with 100 voters, the running time of the algorithm to com-
pute all co-winners is under 0.003 seconds on average when
preferences are single peaked which is 2 orders of magni-
tude lower than the average runtime for random preferences
which is close to 0.2 seconds. Indeed, while the running time
only increased almost linearly with the number of voters for
single-peaked preferences, we observe a near exponential in-
crease in running time with the number of candidates in the
election when profiles have random preferences. This is not
surprising when we consider the number of ties encountered

Figure 4: Early discovery of co-winners on synthetic data for STV.

(a) Coomb’s rule.

(b) Baldwin’s rule.

Figure 5: Running time of the search algorithm on synthetic data with and without pruning for the Coomb’s
and Baldwin’s rules.

on average by the search algorithm as shown in Table 4.

5. ILP FORMULATION
We model the PUT-winners problem as an ILP where

the solutions correspond to the elimination of a single alter-
native in each of m− 1 rounds and we test whether a given
alternative is the co-winner by checking if there is a feasible
solution when we enforce the constraint that the given al-
ternative is not eliminated in any of the rounds. We present
ILP formulations of the STV and Baldwin’s voting rules be-
low. The ILP for Coomb’s rule is similar to the ILP for STV
where the scoring rule is changed from plurality to veto. For
each alternative ai ∈ A, and for each round t ≤ m − 1, we

define the variable xt
i ∈ {0, 1} to model the elimination of

ai at round t.

Table 5: ILP for STV rule.
m n Profiles ILP

alternatives
Uncertain

alternatives
Runtime(s)

10 10 392 6.51 3.52 13.026
10 20 104 8.71 6.91 961.64
10 30 88 9.10 7.49 1799.82
20 10 224 7.93 3.34 177.31
20 20 4 12.25 12 4438.66

(a) Distribution of the # winners.

(b) Frequency of alternative being the winner.

Figure 6: Single-peaked profiles generated i.i.d.

Table 6: ILP for Coomb’s Rule.
m n # profiles % Uncertain

candidates
Runtime (s)

10 10 10 83% 2289.39
10 20 5 92% 2503.07

5.1 STV and Coomb’s rule

• For alternative ai and rounds t ≤ m, there is a binary
variable xt

i that represents the elimination order. xt
i =

1 if and only if ai is eliminated in t-th round.

• For each i ≤ m, 1 ≤ t ≤ m − 1 and j ≤ n, there is
a binary variable pti,j that represents alternative ai’s
plurality score in vote Vj in round t.

The constraints are

• The usual constraints for xt
i to be a full ranking.

• The constraint for pti,j of alternative ai at the top po-

sition: p1ij = 1 and
∑t−1

t′=1 x
t′
i + ptij = 1

• The constraint for pti,j for alternatives from the sec-

ond position: Let Kt
i =

∑
i′�ji

∑t
t′=1

xt′
i′

|{i′�ji}|
, then the con-

straint is,

Kt
i −

m− 1

m
≤ pti,j ≤ Kt

i

.

• For each t, let Plut
i =

∑
j p

t
i,j . Then for all different

i, i′, we have

(1 +
∑
t′≤t

xt′
i′ − xt

i)×M + Plut
i′ ≥ Plut

i

We determine the set of all co-winners as follows: Pick an
alternative ai. Add constraints ∀t ≤ m − 1, xt

i = 0. If ILP
is feasible, ai is a co-winner.

5.2 Baldwin’s rule
The variables are: for all i, t ≤ m, there is a binary vari-

able xt
i that represents the elimination order. xt

i = 1 if and
only if ai is eliminated in t-th round.

The constraints are

• The usual constraints for xt
i to be a full ranking.

• For each t, let Plut
i =

∑
j(1 + |{i′ ≺ i}| −∑

i′≺i

∑t−1
t′=1 x

t′

i′). Then for all different i, i′, we have

(1 +
∑
t′≤t

xt′

i′ − xt
i)×M + Plut

i′ ≥ Plut
i

The set of co-winners is computed as follows: Pick an
alternative ai. Add constraints ∀t ≤ m − 1, xt

i = 0. If ILP
is feasible, ai is a co-winner.

5.3 Comparison of ILP to AI Search
Tables 5, 6 and Figure 8 summarize the experimental re-

sults from running the ILPs to solve PUT-winners w.r.t.
STV, Coomb’s rule and Baldwin’s rule respectively. The re-
sults were obtained using Matlab’s ILP solver. It is clear
that the ILP solver takes far longer to solve PUT-winners
than even the default formulation of AI search without ap-
plying any of our speed up techniques. Another major prob-
lem we encountered was that the Matlab’s ILP solver fre-
quently terminates without being able to determine if the
problem is feasible. A simple comparison with the results in
Figure 3 reveals that the running times of standard search
algorithms from AI are orders of magnitude lower than the
running times of the ILP solvers.

6. SUMMARY AND FUTURE WORK
We have made the first steps of designing practical al-

gorithms for computing all winners under STV and other
multi-stage rules. We have shown that standard search al-
gorithms are much faster and more reliable than ILP. By
running experiments on synthetic dataset, we observe that
cache is the most effective feature for improving running
time. The algorithms run much faster on i.i.d. generated
single-peaked preferences and the winners are around the
median. For Preflib data, about 15% profiles we tested need
tie-breaking under STV.

There are many more strategies we plan to explore. Sup-
pose we use priority queue to store and sort the nodes to
be explored, what is a good priority function to encourage
early discovery of new winners? We tried multiple prior-
ity functions, such as various weighted combinations of the

Figure 7: Running time of AI search algorithms on single-peaked preferences.

Figure 8: Average runtime of the ILP for Baldwin’s
rule on elections with 10 candidates as we vary the
number of voters.

depth of the node, the new winners in the set, and other
features. Unfortunately none of them is significantly bet-
ter than the standard search algorithm. The next step is
to use machine learning to learn a good priority function.
A related approach is to use heuristics along with a search
algorithm such as A∗ search. We are interested in designing
good heuristics to inform the search algorithms.

A major challenge in practice, is the limited cache size.
When m = 60 our machine sometimes run out of memory.
Even if the size of memory is not an issue, the time for check-
ing whether a node has been visited will become significant
when m becomes large. How to design a good search algo-
rithm with limited memory is an interesting and important
open question. In addition to multi-round rules, we also plan
to extend our techniques to compute PUT-ranked-pairs. We
will integrate our algorithms for STV and other multi-stage
rules to OPRA for everyday group decision-making tasks.

Acknowledgments
We thank Vincent Conitzer, Dominik Peters, Toby Walsh,
for helpful discussions and suggestions.

REFERENCES
[1] https://www.opavote.com/methods/

instant-runoff-voting#san-francisco-rcv.

[2] https://www.opavote.com/methods/

single-transferable-vote.

[3] J. Bartholdi, III, C. Tovey, and M. Trick. Voting
schemes for which it can be difficult to tell who won
the election. Social Choice and Welfare, 6:157–165,
1989.

[4] F. Brandt, V. Conitzer, U. Endriss, J. Lang, and
A. D. Procaccia, editors. Handbook of Computational
Social Choice. Cambridge University Press, 2016.

[5] F. Brandt and G. C. C. Geist. Pnyx:: A Powerful and
User-friendly Tool for Preference Aggregation. In
Proceedings of the 2015 International Conference on
Autonomous Agents and Multiagent Systems, pages
1915–1916, 2015.

[6] M. Brill and F. Fischer. The Price of Neutrality for
the Ranked Pairs Method. In Proceedings of the
National Conference on Artificial Intelligence (AAAI),
pages 1299–1305, Toronto, Canada, 2012.

[7] V. Conitzer. Computing Slater rankings using
similarities among candidates. In Proceedings of the
National Conference on Artificial Intelligence (AAAI),
pages 613–619, Boston, MA, USA, 2006. Early version
appeared as IBM RC 23748, 2005.

[8] V. Conitzer, A. Davenport, and J. Kalagnanam.
Improved bounds for computing Kemeny rankings. In
Proceedings of the National Conference on Artificial
Intelligence (AAAI), pages 620–626, Boston, MA,
USA, 2006.

[9] V. Conitzer, M. Rognlie, and L. Xia. Preference
functions that score rankings and maximum likelihood
estimation. In Proceedings of the Twenty-First
International Joint Conference on Artificial
Intelligence (IJCAI), pages 109–115, Pasadena, CA,
USA, 2009.

[10] T. Csar, M. Lackner, R. Pichler, and E. Sallinger.
Winner Determination in Huge Elections with
MapReduce. In Proceedings of the AAAI Conference
on Artificial Intelligence, 2017.

[11] R. Freeman, M. Brill, and V. Conitzer. General
Tiebreaking Schemes for Computational Social
Choice. In Proceedings of the 2015 International

Conference on Autonomous Agents and Multiagent
Systems, pages 1401–1409, 2015.

[12] C. Kenyon-Mathieu and W. Schudy. How to Rank
with Few Errors: A PTAS for Weighted Feedback Arc
Set on Tournaments. In Proceedings of the
Thirty-ninth Annual ACM Symposium on Theory of
Computing, pages 95–103, San Diego, California, USA,
2007.

[13] N. Mattei, N. Narodytska, and T. Walsh. How hard is
it to control an election by breaking ties? In
Proceedings of the Twenty-first European Conference
on Artificial Intelligence, pages 1067–1068, 2014.

[14] P. Stone, R. Brooks, E. Brynjolfsson, R. Calo,
O. Etzioni, G. Hager, J. Hirschberg,
S. Kalyanakrishnan, E. Kamar, S. Kraus,
K. Leyton-Brown, D. Parkes, W. Press, A. Saxenian,
J. Shah, M. Tambe, and A. Teller. Artificial
intelligence and life in 2030. One Hundred Year Study
on Artificial Intelligence: Report of the 2015-2016
Study Panel, Stanford University, Stanford, CA,
September 2016.

[15] T. Walsh. Generating single peaked votes. arXiv
preprint arXiv:1503.02766, 2015.

