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ABSTRACT
Judgment aggregation studies situations where groups of
agents take a collective decision over a number of logically
interconnected issues. A recent stream of papers is dedi-
cated to modelling frameworks of social choice theory, in-
cluding judgment aggregation, within logical calculi usually
designed ad hoc for this purpose. In contrast, we propose the
use of dynamic logic of propositional assignments (DL-PA),
an instance of propositional dynamic logic based on atomic
programs modifying propositional evaluations. We provide
logical equivalents in DL-PA for the most known aggregation
procedures from the literature, for axiomatic properties, and
for properties of the constraints, thus showing the versatility
of this language for dealing with judgment aggregation.

CCS Concepts
•Computing methodologies → Multi-agent systems;

Keywords
Social Choice Theory; Dynamic logic; Modal logic; Compu-
tational Social Choice; Automated Reasoning

1. INTRODUCTION
Social choice theory gathers a number of mathematical

models for the study of collective decisions, such as voting
and elections, or the allocation of resources among a group
of agents. Judgment aggregation is one such model, in which
individuals express binary judgments over a set of intercon-
nected issues, which are then aggregated into a collective
choice by means of an aggregation rule. This model can
be traced back to work by legal scholars [22] and it is now
an established framework in artificial intelligence to study
complex collective decisions [12, 18].

In judgment aggregation, the correlation among the issues
is typically modelled by making use of simple propositional
languages. This explicit link with logic inspired researchers
to look for a full logical formalisation of the setting, devel-
oping logical formalisms that are able to express and reason
about aggregation rules and their properties. These efforts
are part of a fertile research agenda connecting logic with
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social choice theory (see, e.g., Endriss, [11]). To cite some
examples, Arrow’s Theorem [2], one of the cornerstones of
social choice theory, has been formalised into higher-order
logics [33, 27], first-order logic [17] and modal logic [7]. The
ultimate goal of this program is to use automated reason-
ing techniques to discover new results, an objective that has
been partially reached by combining the use of SAT solvers
with mathematical lemmas, in preference aggregation [31],
ranking sets of objects [15], and in classical social choice
theory [5, 6].

Two full-fledged formalisation of judgment aggregation
and preference aggregation made use of modal logic: namely,
Judgment Aggregation Logic — of which both Hilbert-style
[1] and natural deduction [29] axiomatisations have been
provided — and the Logic for Social Choice Functions pro-
posed by Troquard et al. [32]. In both cases, the authors
develop their own modal languages to formalise judgment
aggregation, making the application of automated reason-
ing techniques less immediate. In this paper, instead, we
propose to use the existing language of Dynamic Logic of
Propositional Assignments DL-PA [10, 3]. This logic is an
instance of Propositional Dynamic Logic PDL (see, e.g., [4]),
where atomic programs consist of assignments of truth val-
ues to propositional variables. DL-PA is also grounded on
propositional logic: in other words, there exists a procedure
to translate every modal formula in DL-PA as a propositional
formula [10, 3], showing a direct connection with automated
reasoning via the use of SAT solvers. Moreover, numerous
knowledge representation problems have been expressed in
DL-PA, such as belief change operations [19] and abstract
argumentation problems [9], and it is arguably a natural
choice for the setting of judgment aggregation, where indi-
vidual opinions are represented as binary evaluations.

We translate most aggregation rules proposed in the lit-
erature on judgment aggregation as DL-PA programs, en-
suring that the size of each program remains polynomial in
the number of agents and issues. Consider for instance the
classical majority rule, which collectively accepts a given is-
sue if the number of agents accepting it is greater than the
number of agents rejecting it. A straightforward translation
of this rule would make use of the explicit description of all
possible majorities (i.e., coalitions of more than half of the
agents), which would take exponential space. The formali-
sation in DL-PA we propose solves this problem by a clever
use of counters.

Aggregation rules are typically classified and justified by
means of axiomatic properties, which are then used in the
literature to obtain limitative results on the boundaries of



aggregation — the notorious impossibility theorems. We
provide DL-PA formulas for the most used aggregation ax-
ioms, which can then be interpreted on the translation of a
rule. As an aside, we obtain an interesting distinction be-
tween axioms that bound the result of the aggregation on
one profile, for which we find a translation into propositional
logic, and those that require reasoning about multiple pro-
files, for which DL-PA needs to be used to obtain a compact
representation. The final part of the paper focuses on the
problem of guaranteeing a safe aggregation, i.e., identifying
those types of logical dependencies among the issues such
that aggregating individual judgments yields a result consis-
tent with them. In our framework, this problem boils down
to checking the validity of a corresponding DL-PA formula.

The paper is organized as follows. In Section 2 we provide
the basic definitions of judgment aggregation and of the DL-
PA language, as well as setting the stage for a translation of
the former into the latter. In Section 3 we propose DL-PA
programs to compute the most known judgment aggregation
procedures. Section 4 provides translations for the axiomatic
properties of aggregation functions, and Section 5 focuses
on characterising formulas for safe aggregation. Section 6
concludes the paper and points at a number of directions
for future work. We omit most of the proofs in the interest
of space: full proofs of the main results can be found in
Novaro’s Master Thesis [28].

2. PRELIMINARIES
In this section we introduce the formal framework of both

binary aggregation with integrity constraints and star-free
Dynamic Logic of Propositional Assignments. Moreover, we
provide our first contribution by showing how to translate
aggregation problems into the logic of our choice.

2.1 Binary Aggregation with Integrity
Constraints

Two main frameworks can be considered for judgment ag-
gregation: the classic formula-based model [24], in which in-
dividuals vote directly on complex logical formulas, and bi-
nary aggregation with integrity constraints [16] where agents
have binary opinions on atomic issues linked by an integrity
constraint. In this paper we choose the latter setting, and
we present it briefly below.

Let I = {1, . . . ,m} be a finite non-empty set of issues, on
which the agents in the finite non-empty set N = {1, . . . , n},
for odd n (as we shall see, this is just a technical assump-
tion), express a binary opinion. Individual opinions form a
boolean combinatorial domain D = {0, 1}m, where “1” de-
notes acceptance and “0” rejection. A simple propositional
language LPS can be defined from the set of propositional
symbols PS = {p1, . . . , pm}, with one atom per issue in
I. Then, integrity constraints can be defined as formu-
las IC ∈ LPS , to express the existence of logical inter-
dependencies among the issues. If there is none, we let IC
= >. Consider the following classical example of aggrega-
tion, known in the literature as the discursive dilemma [22]:

Example 1. Three judges have to decide whether (1) a
defendant is liable for breaching a contract, depending on
whether (2) the contract forbade a particular action and (3)
the defendant did it anyway. Let thus IC = p1 ↔ p2 ∧ p3,
and consider the profile below:

p1 p2 p3

Judge 1 1 1 1
Judge 2 0 0 1
Judge 3 0 1 0

Majority 0 1 1

As we can see, while the three judges all respect the integrity
constraint, the majority outcome does not. Hence, it is not
clear whether the judges should give their sentence based on
the collective judgment on the conclusion (the defendant is
not liable) or the premises (the defendant did an action that
was forbidden by the contract).

A ballot B = (b1, . . . , bm) ∈ D is a particular choice of
zeroes and ones for the issues. The set of all ballots satisfying
IC, written Mod(IC) = {B | B |= IC}, is called the models of
IC. We denote by Bi the individual ballot of agent i, and we
assume Bi ∈ Mod(IC) for all i ∈ N : the agents are rational.
A profile B = (B1, . . . , Bn) collects all the individual ballots
of the agents, such that bij indicates the j-th element of
ballot Bi in B. The set NB

j:1 = {i ∈ N | bij = 1} is the
coalition of supporters of issue j in B.

An aggregation procedure (aggregation rule, aggregator)
is a function F mapping a rational profile to a (possibly
irrational) non-empty set of ballots.

Definition 1. Given a set of agents N , a set of issues I
and an integrity constraint IC, an aggregation procedure is
a function F : Mod(IC)N → 2D \ ∅, for 2D the powerset of
D. A rule is called resolute if its outcome is a singleton for
every profile, and irresolute otherwise. We denote by F (B)j
the outcome of a resolute aggregator on issue j.

The Hamming distance measures how much two ballots
disagree on the issues, and is defined asH(B,B∗) = |{j ∈ I |
bj 6= b∗j}|. For example, if B1 = (1, 0, 0) and B2 = (1, 1, 1),
we have H(B1, B2) = 2, since they only differ on the last
two issues.

2.2 Dynamic Logic of Propositional
Assignments

To describe problems in judgment aggregation we choose
the language of Dynamic Logic of Propositional Assignments
DL-PA [10, 3], an instance of Propositional Dynamic Logic
PDL, where atomic programs assign truth value true or false
to propositional variables. This logic has already been used
to model multi-agent scenarios, such as interactions of agents
in normative systems [20] and social simulations [14]. More
precisely, we focus on the star-free version of DL-PA, without
unbounded iteration — which can be obtained from DL-PA
via the elimination of the Kleene star [3].

The language of star-free DL-PA is given by the following
Backus-Naur grammar:

ϕ ::= p | > | ⊥ | ¬ϕ | ϕ ∨ ϕ | 〈π〉ϕ
π ::= +p | −p | π ;π | π ∪ π | ϕ?

where p ranges over P = {p, q, . . . }, a countable set of propo-
sitional variables.

Atomic formulas consist of variables and constants > and
⊥. Complex formulas are built via negation ¬, disjunction
∨, and a diamond modality for each program 〈π〉. Other
Boolean connectives (e.g., conjunction ∧, implication→, bi-
conditional ↔, exclusive disjunction ⊕) and the dual oper-
ator [π]ϕ are defined in the usual way. Atomic programs



+p and −p assign truth value true or false to variable p, re-
spectively. Sequential composition π ;π′ executes first π and
then π′, nondeterministic union π ∪ π′ nondeterministically
chooses to execute either π or π′, and test ϕ? checks that ϕ
holds.

A valuation v is a subset of P that specifies the truth
value of every propositional variable, so that V = 2P =
{v1, v2, . . . } is the set of all valuations. When p ∈ v, we say
that p is true in v (and we say that p is false in v otherwise).
As illustrated in Table 1, DL-PA programs are interpreted
through a unique relation between valuations

‖p‖ = {v ∈ V | p ∈ v}
‖>‖ = 2P

‖⊥‖ = ∅
‖¬ϕ‖ = 2P\ ‖ϕ‖

‖ϕ ∨ ψ‖ = ‖ϕ‖ ∪ ‖ψ‖
‖〈π〉ϕ‖ = {v ∈ V | ∃v1 s.t. (v, v1) ∈‖π‖ and v1 ∈‖ϕ‖}
‖+p‖ = {(v1, v2) | v2 = v1 ∪ {p}}
‖−p‖ = {(v1, v2) | v2 = v1 \ {p}}
‖π ;π′ ‖ = ‖π‖ ◦ ‖π′ ‖
‖π ∪ π′ ‖ = ‖π‖ ∪ ‖π′ ‖
‖ϕ?‖ = {(v, v) | v ∈‖ϕ‖}

Table 1: Interpretation of DL-PA expressions

Abbreviations have been introduced in the literature to
make programs more readable [3, 4, 19]. As a convention,
abbreviations for formulas will start with an uppercase let-
ter, while those for programs and counters will start with a
lowercase letter. We thus have skip := >?, if ϕ then π1 else
π2 := (ϕ? ;π1) ∪ (¬ϕ? ;π2), p ← q := if q then + p else − p
and if ϕ do π := if ϕ then π else skip, as well as repeated ex-
ecution of program π for n times, or up to n times (where
both programs execute flip for n = 0):

πn := π ;πn−1

π≤n := (skip ∪ π) ;π≤n−1

We can write any number s ∈ N0 in DL-PA via its bi-
nary expression, thanks to a conjunction of t = blog sc + 1
variables [3]. If x is the binary expression of s, we use
a conjunction of qi and ¬qi propositional variables, with
i ∈ {0, . . . , blog sc}, such that a non-negated variable means
that the corresponding binary digit in x is a 1, while a
negated variable indicates a 0. For instance, if s = 11, we
have that x = 1011 and the corresponding formula in DL-PA
is 11 := q3 ∧ ¬q2 ∧ q1 ∧ q0.

The following two programs increment or set to zero (i.e.,
assign truth value false to all the variables in P ) a given
counter [3]. Let xt := {qxi | 0 ≤ i < t} be a set of variables:

incr(xt) := ¬
( ∧
0≤i≤t−1

qxi
)
? ;

⋃
0≤k≤t−1

(
(¬qxk ∧

∧
0≤i≤k−1

qxi )? ;

+ qxk ; ;
0≤i≤k−1

−qxi
)

zero(P ) := ;
p∈P
−p

We can compare two numbers and check whether one of
them is greater than the other, they are equal, or one of
them is greater or equal to the other, via the following DL-
PA formulas. The general idea is to compare the digits at the

same position in the binary expressions of the two numbers.1

x > y :=
∨

0≤k<t

(( ∧
k<i<t

(qxi ↔ qyi )
)
∧ qxk ∧ ¬qyk

)
x = y :=

∧
0≤k<t

qxk ↔ qyk

x ≥ y := x > y ∨ x = y

As a convention, we let
∧
k<i<t(q

x
i ↔ qyi ) = > for k = t− 1.

Additionally, we may want to flip the truth value of some
variables in a set P . The first program below flips the truth
value of a single, nondeterministically chosen, variable in P .
The second resets the truth value of all variables in P to
some new value: as a result, either their truth value has
been flipped or not. Both programs execute skip for P = ∅.

flip1(P ) :=
⋃
p∈P

(p← ¬p)

flip≥0(P ) := ;
p∈P

(+p ∪ −p)

The next two formulas hold when different types of min-
imisation are achieved. The first is true if and only if ¬ϕ
holds whenever we do not change the truth value of some
variable in the non-empty set P . The second holds if and
only if we found the minimal Hamming distance s between
the states of before and after flipping the variables in P ,
such that ϕ holds afterwards:

D(ϕ, P ) := ¬〈
⋃
p∈P

flip≥0(P \ {p})〉ϕ

H(ϕ, P,≥s) :=

{
> if s = 0
¬〈flip1(P )≤s−1〉ϕ if s > 0

Observe that D(ϕ, P ) does not imply that ϕ will hold if we
flip the truth value of all the variables in P . In our setting
this definition suffices, but such alternative formulation has
been given as well [19].

2.3 Translating Aggregation Problems into
DL-PA

We here show how to translate profiles and aggregation
rules into DL-PA. The former is turned into a specific type
of valuation, while the latter become programs. We also
show how to check rationality in DL-PA and how to turn an
arbitrary valuation into one corresponding to a profile.

As a first step, let B := {pij | i, j ∈ N} be the subset of
P whose variables encode the opinion of any agent i on any
issue j. Analogously, O := {pj | j ∈ N} is the subset of P
whose variables refer to the possible output for any issue j.
From these two infinite sets, we derive two finite subsets for
specific n agents and m issues. Namely, Bn,m := {pij | i ∈
N and j ∈ I} is the set of propositional variables referring
to the decision of the agents in N on the issues in I, and

1Suppose two numbers can be expressed with a different
amount of binary digits. In this case, if in some program
we need to use many counters, we take the maximal value
a counter could take as the upper bound for all counters in
that program. Hence, if t is the maximal number of vari-
ables needed to express the maximal value a counter can
take, and some other number is expressible by using only
k variables (where k < t), it will nonetheless be expressed
with t variables by imposing ¬qi for all k < i ≤ t. We thus
write x instead of xt.



the variables in Om := {pj | j ∈ I} refer to the collective
decision on the issues in I. Finally, U := {qi | i ∈ N} is
the subset of P whose variables are used for finitely many
counters in our programs.

The following definition carves out the valuations that cor-
respond to a profile in judgment aggregation.

Definition 2. We say that valuation vB translates pro-
file B = (B1, . . . , Bn) on m issues, in case:

(i) vB ⊆ Bn,m, and

(ii) pij ∈ vB ⇐⇒ bij = 1.

The first condition ensures that only variables correspond-
ing to the decision of the agents on the issues could possibly
be true in vB . This means, in particular, that counters are
initially set to zero. According to the second condition, a
variable in vB is true if and only if the corresponding entry
in profile B has value 1. For example, if we have profile
B = ((0, 1), (0, 0), (1, 0)) for 3 agents and 2 issues, the set
B3,2 = {p11, p12, p21, p22, p31, p32} corresponds to the entries
in the profile, the set O2 = {p1, p2} handles the outcome
of aggregation rules and valuation vB = {p12, p31} ⊆ B3,2

encodes the values of the profile.
We now introduce the definition for translating aggrega-

tion rules as DL-PA programs.

Definition 3. A program f(Bn,m) translates aggregation
rule F , if for all profiles B and valuations vB translating B
according to Definition 2, it is the case that:

• F is resolute and (vB , v
′) ∈‖ f(Bn,m) ‖, implies that

for all j ∈ I and pj ∈ Om:

pj ∈ v′ ⇐⇒ F (B)j = 1.

• F is irresolute and V f
vB = {v′ | (vB , v′) ∈‖ f(Bn,m)‖},

implies that there is a bijection g : F (B) → V f
vB such

that if g(B) = v′ then for all j ∈ I and pj ∈ Om:

pj ∈ v′ ⇐⇒ bj = 1.

We write the integrity constraint as a formula IC over
variables in Om. In order to check whether a particular
choice of truth values over Bn,m corresponds to a profile, i.e.,
all the individual ballots satisfy the constraint, we check if
the following formula holds.

RationalIC(Bn,m) :=
∧
i∈N

[ ;
j∈I

pj ← pij ]IC

Namely, we check whether by copying into the outcome vari-
ables the truth values of the variables for each individual
ballot, the constraint IC holds.

The following program leads from an arbitrary valuation
to one that possibly corresponds to the encoding of a profile,
by creating the “right” initial conditions:

profIC(Bn,m,Om) := zero(Om) ; RationalIC(Bn,m)?

Observe that after its execution all the outcome variables
are false, but it is not enough to conclude that condition
(i) of Definition 2 holds. Nonetheless, all programs encod-
ing aggregation rules will just need to inspect variables in
Bn,m and (possibly) change the truth values of variables in
Om, and they will initialise at zero all counters as the first

step. Therefore, we consider the valuation reached after the
execution of profIC(Bn,m,Om) as encoding a profile as well.

To conclude this section, we highlight an important re-
mark. Since aggregation rules are defined over a specific
number of issues, number of agents and integrity constraint,
the programs we provide as their DL-PA translation are to
be intended as general program schemas: a set of issues I,
set of agents N and constraint IC need to be given to com-
pletely spell them out.

3. AGGREGATION RULES
Aggregation rules are the basic bricks of judgment aggre-

gation, allowing to reach a group decision from individual
choices. In this section we translate known aggregation rules
as DL-PA programs, omitting the proof of correctness of our
translations for space constraints.

3.1 Expressibility of Aggregation Rules
We begin by proving a general result that shows how any

judgment aggregation rule, as introduced in Definition 1,
can be expressed as a DL-PA program.

Theorem 1. All aggregation rules F : Mod(IC)N → 2D \
∅ for some N , I and IC are expressible as DL-PA programs.

Proof. We first deal with the case of a resolute aggrega-
tion rule F . Consider the DL-PA program consisting of a se-
quential composition of sub-programs of the form if ϕB do
πF (B) for each profile B, where ϕB = (

∧
j∈I

∧
i∈NB

j:1
pij) ∧

(
∧
j∈I

∧
i∈(N\NB

j:1)
¬pij), i.e., ϕB completely identifies pro-

file B, and πF (B) = ;{j∈I|F (B)j=1}+pj ; ;{j∈I|F (B)j=0}−pj ,
i.e., πF (B) modifies the outcome variables according to the
result of F on profile B.

For irresolute F it sufficies to consider a sequential com-
position of sub-programs of the form if ϕB do

⋃
B∈F (B) πB ,

where πB is defined as πB = ;{j∈I|bj=1}+pj ; ;{j∈I|bj=0}−pj ,
generating a non-deterministic program whose output con-
sists of all outcomes of F . These two types of programs
clearly translate resolute and irresolute aggregation rules.

While on the one hand the result above shows that DL-
PA is fully expressive when it comes to translating judgment
aggregation rules, on the other hand the formulas used in the
proof are all of size exponential in the number of individuals
and issues. More precisely, since all profiles are explicitly
given in the specification of the programs, the size is in the
order of 2|I| × |N |. In the remainder of this section we
thus present compact programs for a selection of well-known
judgment aggregation rules.

3.2 Simple Aggregation Rules
We call the following rules simple because they are all

resolute, they are easy to explain and understand, and they
can also be found in real-world examples.

3.2.1 Dictatorship of Agent i

The dictatorial rule is perhaps the simplest and at the
same time less attractive aggregation rule. For all profiles B,
the outcome of the dictatorship of some fixed agent i ∈ N is
her individual ballot. Namely, Dictatorshipi(B)j = 1 ⇐⇒
bij = 1 for all j ∈ I. Its translation in DL-PA can easily be
obtained as the following program:



Proposition 1. Let I and N be given. Then, program
dicti(Bn,m) := ;

j∈I(pj ← pij) translates rule Dictatorshipi.

3.2.2 Quota Rules
The majority rule is an instance of the more general class

of quota rules [8]. A quota rule specifies for each issue a
certain threshold of support that has to be reached in order
for the issue to be accepted in the outcome. The quota q
can be any integer such that 0 ≤ q ≤ n + 1, where n is
the number of agents. In case all the issues have the same
quota, we speak of uniform quota rules. If qj is the quota
for issue j ∈ I and ~q = (q1, . . . , qm), we have:

Quota~q(B)j = 1 ⇐⇒ |NB
j:1| ≥ qj .

We now state a result that provides, for every choice of
quotas qj , a DL-PA program translating the corresponding
quota rule (by using a counter quotaj for each issue j).

Proposition 2. For I a set of issues, N a set of agents,
and 0 ≤ q1, . . . , qm ≤ |N |+ 1, the Quota~q rule is translated
in the following DL-PA program:

quota~q(B
n,m) := ;

j∈I
zero(quotaj) ; ;

j∈I
incr(quotaj)

qj ;

;
j∈I

(
zero(supp) ;( ;

i∈N
if pij do incr(supp)) ;

if supp ≥ quotaj do + pj
)
.

We refer to the specific program for the majority rule as
maj. Moreover, for the uniform quota rule with q = 1,
called the nomination rule, an even more compact program
is nom(Bn,m) := ;

j∈I(if
∨
i∈N pij do + pj).

3.3 Maximisation and Minimisation Rules
In this section we focus on two aggregation rules that are

based on maximisation or minimisation processes and aim
at amending the outcome of the majority rule, in case it
does not satisfy the integrity constraint. The first one is
the maximal subagenda rule, while the second one is the
minimal number of atomic changes rule [23].

3.3.1 Maximal Subagenda Rule
The maximal subagenda rule returns ballots satisfying the

integrity constraint and having maximal agreement (with
respect to set inclusion) with the majority outcome:

MSAIC(B) =
⊆

argmax
B|=IC

{j ∈ I | bj = Maj(B)j}.

Before presenting a DL-PA program translating this rule,
we need some further notation. Consider the following pro-
grams, which all execute skip if P = ∅:

store(P ) := ;
p∈P

p′ ← p

restore1(P ) :=
⋃
p∈P

(p⊕ p′? ; p← p′)

restore≥0(P ) := ;
p∈P

(skip ∪ p← p′)

Program store stores the truth value of the variables in
P in some fresh variables p′, program restore1(P ) restores
the truth value of just one variable p′ in the corresponding
variable in P , and program restore≥0(P ) restores the truth

value of none, some, or all variables p′ in the corresponding
variables in P .

We can now present the following program, inspired by
analogous work in the literature on belief change [19]. Given
that the MSAIC is an irresolute rule we might need to handle
multiple outcomes for the same profile: whence its (omitted)
proof differs from that of Proposition 1.

Proposition 3. Let I be a set of issues, N a set of
agents and IC a propositional formula. The MSAIC rule
is translated in the following DL-PA program:

msaIC(Bn,m) :=maj(Bn,m) ; store(Om) ; flip≥0(Om) ; IC? ;

[restore1(Om) ; restore≥0(Om)]¬IC?.

3.3.2 Minimal Number of Atomic Changes Rule
The minimal number of atomic changes rule returns the

following outcome set:

MNACIC(B) = {B | Maj(B∗) = B,B |= IC and for all B′∑
i∈N

H(Bi, B
∗
i ) ≤

∑
i∈N

H(Bi, B
′
i)}.

Recall that the Hamming distance H(B,B′) between two
ballots is the number of issues on which they differ (cf. Sec-
tion 2.1). This rule thus looks for profiles which are mini-
mally different from the current one, such that the majority
rule applied to them would return an outcome consistent
with the constraint.

Proposition 4. Let I be a set of issues, N a set of
agents and IC a propositional formula. The MNACIC rule
is translated in the following DL-PA program:

mnacIC(Bn,m) :=
⋃

0≤d≤m·n

(
H(〈profIC(B

n,m,Om) ;maj(Bn,m)〉IC,

Bn,m,≥d)? ; flip1(Bn,m)d
)
;

profIC(B
n,m,Om) ;maj(Bn,m) ; IC?.

The program mnacIC finds the minimal number d of vari-
ables in the set Bn,m whose truth values can be modified
such that applying program maj to this new profile leads to
a valuation where the outcome satisfies the constraint.

3.4 Preference Aggregation Rules
This section presents rules inspired by the literature on

preference aggregation, and that have been formalised in
judgment aggregation in a number of papers. The first is
the Kemeny rule [21]. Then, we present the Slater rule, also
known as the maxcard subagenda rule [23]. A program sim-
ilar to the ones presented below can be designed to formalise
the ranked pairs rule as well (see [28]).

3.4.1 Kemeny Rule
The outcome of the Kemeny rule consists of those ballots

that satisfy the constraint and that minimise the sum of the
Hamming distance to the individual ballots in the profile.

KemenyIC(B) = argmin
B|=IC

∑
i∈N

H(B,Bi).



Let us first introduce the following program and formula:

sH(Om,Bn,m) := zero(dis) ; ;
i∈N

(
;
j∈I

if pj ⊕ pij do

incr(dis)
)
,

MD(Om,Bn,m, IC) := [sH(Om,Bn,m) ; store(dis) ; flip≥0(Om) ;

sH(Om,Bn,m)](dis’ > dis→ ¬IC).

Program sH computes the sum of the Hamming distances
between the outcome and the profile. Formula MD is true if
and only if whenever some outcome is closer to the profile
than the current one, with respect to the Hamming distance,
then IC is not satisfied.

Proposition 5. Let I be a set of issues, N a set of
agents and IC a propositional formula. The KemenyIC rule
is translated in the following DL-PA program:

kemIC(Bn,m) :=
⋃

0≤d≤m

(
〈flip1(Om)d〉(MD(Om,Bn,m, IC)∧

IC)? ; flip1(Om)d
)

; MD(Om,Bn,m, IC) ∧ IC?.

The program kemIC finds the right d such that by flipping
the truth value of d outcome variables we get to a valuation
that satisfies the constraint, and such that d is the minimal
Hamming distance to the rest of the profile.

3.4.2 Slater Rule
The outcome of the Slater rule consists of those ballots

satisfying the constraint and minimising the Hamming dis-
tance from the outcome of the majority rule for that profile.

SlaterIC(B) = argmin
B|=IC

H(B,Maj(B)).

Proposition 6. Let I be a set of issues, N a set of
agents and IC a propositional formula. The SlaterIC rule
is translated in the following DL-PA program:

slaterIC(Bn,m) :=maj(Bn,m) ;
⋃

0≤d≤m

(
H(IC,Om,≥d)? ;

flip1(Om)d
)

; IC?.

The program slaterIC first computes the majority rule, and
then it finds the minimal distance d such that by flipping the
truth value of d variables in the outcome we reach a valua-
tion where the constraint is satisfied. In case the majority
outcome already satisfies IC, we have that d = 0.

4. AXIOMS
Aggregation rules can be characterised according to which

general properties they satisfy. These properties are called
axioms in the literature [8]. In line with similar work in
preference aggregation, where properties are sometimes dis-
tinguished into intra-profile and inter-profile conditions [30],
we here make a distinction between single-profile and multi-
profile axioms. The former type relates the structure of a
profile with the outcome of an aggregation rule applied on
that profile. The latter type links the structure of two pro-
files with the outcomes of the same aggregation rule applied
on them.

4.1 Single-profile Axioms
We present four classical single-profile axioms, for which

we provide a translation in propositional logic. The full DL-
PA machinery is thus not necessary in this case.

A rule F is unanimous if in case all agents agree on some
issue j, the outcome of F for issue j agrees with them.

U : For all B, for all j ∈ I and for x ∈ {0, 1}, if bij = x for
all i ∈ N then F (B)j = x.

A rule is neutral with respect to the issues if, when two
issues are treated in the same way in the input, they are
treated in the same way in the output.

NI : For any two j, k ∈ I and any B, if for all i ∈ N
bij = bik then F (B)j = F (B)k.

A rule is neutral with respect to the domain if, whenever
two issues are treated in an opposite way in the input, their
output should be opposite.

ND : For all B and any j, k ∈ I, if for all i ∈ N bij = 1−bik
then F (B)j = 1− F (B)k.

A rule is neutral-monotonic if the acceptance of an issue
j in a given profile implies the acceptance of any other issue
k which is accepted by a strict superset of individuals:

MN : For all B and any j, k ∈ I, if bij = 1 implies bik = 1
for all i ∈ N , and there is s ∈ N such that bsj = 0 and
bsk = 1, then F (B)j = 1 implies F (B)k = 1.

We are now ready to present the following result:

Theorem 2. Let Bn,m be the set of variables for agents
in N and issues in I, let F be an aggregation rule for n and
m, and let f be its DL-PA translation. Moreover, let:

U :=
∧
j∈I

(
((
∧
i∈N pij)→ pj) ∧ ((

∧
i∈N ¬pij)→ ¬pj)

)
.

NI :=
∧
j∈I

∧
k∈I

(
(
∧
i∈N (pij ↔ pik))→ (pj ↔ pk)

)
.

ND :=
∧
j∈I

∧
k∈I

(
(
∧
i∈N (pij ↔ ¬pik))→ (pj ↔ ¬pk)

)
.

MN :=
∧
j∈I

∧
k∈I

(
(
∧
i∈N (pij → pik)∧

∨
s∈N (¬psj∧psk))→

(pj → pk)
)
.

Then, the following equivalences hold:

(i) U holds ⇐⇒ |= [profIC(Bn,m,Om) ; f(Bn,m)]U.

(ii) NI holds ⇐⇒ |= [profIC(Bn,m,Om) ; f(Bn,m)]NI .

(iii) ND holds ⇐⇒ |= [profIC(Bn,m,Om) ; f(Bn,m)]ND.

(iv) MN holds ⇐⇒ |= [profIC(Bn,m,Om) ; f(Bn,m)]MN.

4.2 Multi-profile Axioms
We now present three multi-profile axioms, which we trans-

late as DL-PA formulas. In fact, to check whether an aggre-
gation rules satisfies them, we need to compare the outcomes
of the rule on different profiles. Dealing with multiple pro-
files means referring to more than one valuation, and apply-
ing the program expressing rule F more than once.

A rule is independent if, whenever an issue j is treated in
the same way in two profiles, the outcome of the rule for j
is identical in both of them. Formally:



I : For any j ∈ I and profiles B and B′, if bij = b′ij for all
i ∈ N , then F (B)j = F (B′)j .

A rule F is independent-monotonic if, whenever we con-
sider two profiles such that the second one differs from the
first in that some agent i first rejected issue j and then
she accepts it, if j was accepted in the first outcome then
it should still be accepted in the second. Let (B−i, B

′
i) =

(B1, . . . , B
′
i, . . . , Bn) for some profile B:

MI : For any issue j ∈ I, agent i ∈ N , profiles B =
(B1, . . . , Bn) and B′ = (B−i, B

′
i), if bij = 0 and b′ij =

1 then F (B)j = 1 implies F (B′)j = 1.

An anonymous rule treats each agent in the same way.
That is, by permuting the order of the individual ballots in
the input, the output for all the issues does not change.

A : For all B and any permutation σ : N → N ,
F (B1, . . . , Bn) = F (Bσ(1), . . . , Bσ(n)).

We can now state the following result:

Theorem 3. Let Bn,m be the set of variables for agents
in N and issues in I, let F be an aggregation rule for n
and m, and let f be its DL-PA translation. Moreover, for
Bnj := {pij | i ∈ N} let:

I :=
∧
j∈I

(
(pj → [flip≥0(Bn,m \ Bnj ) ; profIC(Bn,m,Om) ;

f(Bn,m)]pj) ∧ (¬pj → [flip≥0(Bn,m \ Bnj ) ;
profIC(Bn,m,Om) ; f(Bn,m)]¬pj)

)
MI :=

∧
j∈I

(
pj →

∧
i∈N [+pij ; profIC(Bn,m,Om) ; f(Bn,m)]pj

)
A := [store(Om) ;

(⋃
i,k∈N ;j∈I

(
if pij ⊕ pkj do (flip1({pij}) ;

flip1({pkj}))
))n−1

; zero(Om) ; f(Bn,m)]
∧
j∈I(pj ↔ p′j)

Then, the following is the case:

(i) I holds ⇐⇒ |= [profIC(Bn,m,Om) ; f(Bn,m)]I.

(ii) MI holds ⇐⇒ |= [profIC(Bn,m,Om) ; f(Bn,m)]MI.

(iii) A holds ⇐⇒ |= [profIC(Bn,m,Om) ; f(Bn,m)]A.

5. AGENDA SAFETY
A recurring problem in judgment aggregation is that the

outcome of a rule might not respect the given logical de-
pendencies among the issues, even though each agent sat-
isfies the integrity constraint in her individual ballot. As a
way out, it can be investigated whether we can ensure that
the outcome of certain groups of aggregation rules will al-
ways satisfy a given constraint, provided that the constraint
relates the issues to one another in a specific way. This
approach was first studied in formula-based judgment ag-
gregation under the name of the safety of the agenda [13].

5.1 Prime Implicants and Safety
In this preliminary section we make use of the area of

logic studying prime implicants to redefine known concepts
of the agenda safety problem. Given a set of axioms AX, we
call the set FIC[AX] := {F | F satisfies all axioms in AX
and the domain of F is Mod(IC)N for some N} a class of
aggregation procedures. The idea of safety for constraints is
then defined as follows.

Definition 4. An integrity constraint IC is safe for the
class FIC[AX] if and only if for all F ∈ FIC[AX], we have

F (B) |= IC for all inputs B ∈ Mod(IC)N for some N .

Let a literal be either a variable p or its negation ¬p. A
term D is a conjunction of distinct literals and D−D′ is the
subtraction operation over terms, resulting in all the literals
of D that are not in D′. A term D is an implicant of ϕ if
and only if D |= ϕ. We follow the presentation of Marchi et
al. [25], and give the following definition:

Definition 5. D is a prime implicant of ϕ if and only if

(i) D is an implicant of ϕ;

(ii) for all literals L in D, (D − {L}) 6|= ϕ.

Observe that any constraint IC can be rewritten as a con-
junction of negations of prime implicants of ¬IC [26]: in
the following we assume that constraints have this syntacti-
cal form. The following definitions reinterpret for integrity
constraints some known agenda properties of formula based
judgment aggregation, by making use of the concept of prime
implicants. Let Pϕ be the set of variables used in ϕ.

Definition 6. A constraint IC has the k-median prop-
erty (kMP) if and only if any prime implicant D of ¬IC is
such that |PD| ≤ k.

A constraint IC has the simplified median property (SMP)
if and only if any prime implicant D of ¬IC is such that
|PD| = 2 and for p, q ∈ PD we have that ¬Lp ∧ ¬Lq is also
a prime implicant of ¬IC.

For k = 2 we speak of the median-property (MP). Observe
that if IC = > we do not have any prime implicant of ¬IC,
which means that the issues are all independent from one
another — a condition known as syntactic simplified median
property (SSMP) in the literature.

5.2 Safety in DL-PA
We start by proving a lemma which characterises by a

DL-PA formula the valuations where some prime implicant
of formula ϕ is true. Let thus ϕ be a formula and let P ⊆ Pϕ
be a subset of the variables of ϕ. Given a valuation v, let
Pv :=

∧
1≤k≤|P | Lk be the term such that for all pk ∈ P :

Lk :=

{
pk if v |= pk
¬pk otherwise

Lemma 1. Let v be a valuation, ϕ a formula and P ⊆ Pϕ
a subset of the variables in ϕ. Term Pv is a prime implicant
of ϕ if and only if v |= PI(P,ϕ), where

PI(P,ϕ) := [flip1(P )]〈flip≥0(Pϕ \ P )〉¬ϕ ∧ [flip≥0(Pϕ \ P )]ϕ.

Proof. For the left-to-right direction, let Pv be a prime
implicant of ϕ and suppose, for reductio, that v |= ¬PI(P,ϕ).
Observe that, if 〈flip1(P )〉[flip≥0(Pϕ \ P )]ϕ is the case, we
would have a contradiction with condition (ii) of Definition 5
(Pv is not prime). In fact, we would have that some variable
pk ∈ Pv corresponding to a literal Lk in Pv would make (D−
{Lk}) |= ϕ hold. On the other hand, if 〈flip≥0(Pϕ \P )〉¬ϕ is
the case, we would have a contradiction with condition (i)
of Definition 5 (Pv is not an implicant of ϕ). In fact, there
would be some valuation v′ where the literals in Pv are true
and yet ¬ϕ holds. Therefore, we have v |= PI(P,ϕ).



We prove the right-to-left direction by contraposition. Sup-
pose Pv is not a prime implicant of ϕ. By Definition 5 this
means that either Pv is not an implicant of ϕ, which would
imply that v 6|= [flip≥0(Pϕ \ P )]ϕ, or that Pv is not prime,
which would imply that v 6|= [flip1(P )]〈flip≥0(Pϕ \ P )〉¬ϕ.
Thus, in both cases we can conclude that v 6|= PI(P,ϕ).

Proposition 7. Constraint IC has the kMP if and only
if |= ¬IC→

∨
P⊆PIC
|P |≤k

PI(P,¬IC).

Proof. For the left-to-right direction, assume that IC
has the kMP and suppose, for reductio, that there is some
v such that v |= ¬IC and v |=

∧
P⊆PIC
|P |≤k

¬PI(P,¬IC). Since

v 6|= IC and IC can be written as a conjunction of negations
of prime implicants of ¬IC, we know that there must be
some prime implicant D of ¬IC such that v |= D and that
|PD| ≤ k. By Lemma 1 we thus get that v |= PI(PD,¬IC),
which contradicts v |=

∧
P⊆PIC
|P |≤k

¬PI(P,¬IC).

We prove the right-to-left direction by contraposition. Sup-
pose IC does not have the kMP: hence, there is some prime
implicantD of ¬IC such that |PD| ≥ k+1. We now provide a
valuation v such that v |= ¬IC and v 6|=

∨
P⊆PIC
|P |≤k

PI(P,¬IC).

Consider valuation v such that v |= D and for all other
prime implicants D′ of ¬IC, we have v 6|= D′ (such a valu-
ation always exists). Since v |= D, we get by Definition 5
that v |= ¬IC. Suppose there was some other term D′ such
that v |= PI(PD′ ,¬IC), |D′| ≤ k and v |= D′: by Lemma 1
this would imply that D′ is a prime implicant of ¬IC, con-
tradicting our choice of valuation.

Proposition 8. Constraint IC has the SMP if and only
if |= ¬IC→

∨
pi,pk∈PIC

(
PI({pi, pk},¬IC) ∧ [flip(pi); flip(pk)]

PI({pi, pk},¬IC)
)
.

Proof. For the left-to-right direction, assume that IC
has the SMP and consider an arbitrary valuation v such
that v |= ¬IC. Suppose, for reductio, that the consequent
does not hold. Hence, either there is no prime implicant of
¬IC of size 2 or there is one, but the negation of its literals
is not a prime implicant of ¬IC. In both cases, this would
contradict our assumption that IC has the SMP.

For the right-to-left direction, assume that IC has not the
SMP. This means that either it has not the MP, or it has
the MP but there is a prime implicant of ¬IC such that its
negated literals are not also a prime implicant of ¬IC. In
the first case, we would get by Proposition 7 that there is a
valuation v such that v 6|= PI({pi, pk},¬IC) thus making the
consequent false. In the second case, we would have that v 6|=
[flip(pi); flip(pk)]PI({pi, pk},¬IC), thus falsifying the conse-
quent again. Therefore, 6|=

∨
pi,pk∈PIC

(
PI({pi, pk},¬IC)∧

[flip(pi); flip(pk)]PI({pi, pk},¬IC)
)
.

6. CONCLUSIONS AND FUTURE WORK
In this paper we showed how to translate the framework

of judgment aggregation, in its model of binary aggregation
with integrity constraints, into the propositional dynamic
logic DL-PA. The key ideas of our translation consisted in
turning profiles of individual ballots into a specific type of
valuation, and aggregation rules into DL-PA programs mod-
ifying the truth value of a set of variables for the outcome.
We then provided compact representations for a number of

aggregation rules from the literature. Next, we focused on
the axiomatic characterisation of aggregation rules as well
as the safety of the agenda problem in DL-PA.

Our work paves the way to further investigations from
both a computational and an agent-based perspective. First
of all, a significant characteristics of DL-PA is that this
modal logic is grounded on propositional logic. In other
words, this means that there exists a procedure to trans-
late any DL-PA formula as a formula of propositional logic
[10, 3]. Therefore, thanks to the work presented here we
now have a chain of translations from aggregation problems
to DL-PA, and from DL-PA to propositional logic — which
yields us the tool of SAT solvers to enhance research in judg-
ment aggregation. As we anticipated in the introduction,
this computer-based approach has already been proven suc-
cessful in Computational Social Choice [31, 15, 5].

In the second place, our translation allows us to also model
the winner determination problem for aggregation rules [13,
23]: i.e., computing the outcome of a rule on a given pro-
file. The formulation of this problem differs between reso-
lute and irresolute aggregators. As an example, for a reso-
lute aggregation rule F the problem is usually formulated as
checking for each issue j whether F (B)j = 1 for profile B.
This would hence translate into DL-PA as checking whether
vB |= [f(Bn,m)]pj is the case. Following our previous consid-
eration, it would then be possible to translate instances of
such formula into propositional logic.

As far as the questions related to agent-based reasoning
are concerned, we propose a possible generalisation and a
direction for future research. It is easily seen that our frame-
work could be generalised to deal with a setting where agents
are allowed to abstain on the issues. Specifically, it would
be sufficient to consider an additional set of propositional
variables for the profile, to keep track of the issues on which
the agents abstain. This would hence result in two copies of
the profile to fully cover the information about abstentions
and individual opinions.

Finally, it would be interesting to provide a DL-PA treat-
ment of strategy-proofness for aggregation rules. Given that
we have a way to store the values of propositional variables,
to compute the Hamming distance and to use counters, in-
corporating this kind of study in our setting would be fairly
straightforward — of course, in case we assume Hamming
distance type of preferences over possible outcomes for the
agents. We thus leave these questions for future investiga-
tion.
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