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ABSTRACT

There is increasing interest in promoting participatory democ-
racy, in particular by allowing voting by mail or internet
and through random-sample elections. A pernicious con-
cern, though, is that of vote buying, which occurs when a bad
actor seeks to buy ballots, paying someone to vote against
their own intent. This becomes possible whenever a voter
is able to sell evidence of which way she voted. We show
how to thwart vote buying through decoy ballots, which are
not counted but are indistinguishable from real ballots to a
buyer. We show that an Election Authority can significantly
reduce the power of vote buying through a small number of
optimally distributed decoys, and model societal processes
by which decoys could be distributed.
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1. INTRODUCTION

The goal of participatory democracy [9,11] is to engage
citizens more frequently and with more granularity in the
decision-making processes of government bodies. Technolo-
gies that can help with this transition are those that support
voting from the home by mail or over the internet, and that
make use of random sample elections, in which a representa-
tive subsample of the population is tasked with voting on a
particular issue, allowing participatory democracy to func-
tion without everyone needing to be concerned with every
issue.

A pernicious concern, though, is that of vote buying, where
a bad actor attempts to gain improper influence in an elec-
tion by purchasing ballots from voters and paying them to
vote against their intent. The practical implications of this
are manifold, since the social construct of elections relies on
the perception of reliability and fairness. Vote buying has
been an everlasting threat to democracy; for example, a sur-
vey shows that in the 1996 Thai general elections “one third
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of households were offered money to buy votes at the last
general election” [13]. Schaffer [14] mentions that “/Vote buy-
ing/... is making an impressive comeback...it seems, a blos-
soming market for votes has emerged as an epiphenomenon
of democratization”. New technologies can make the situa-
tion worse. For example, web platforms can serve as middle-
men, digital currency supports anonymous payments, and
abundant data coupled with machine learning can help buy-
ers discover entrapment schemes as well as identify voters to
target with offers.

In this paper, we show that vote buying can be thwarted
by distributing decoy ballots, which are not counted, in ad-
dition to real ballots. A vote buyer will not know whether a
ballot is real or decoy, and thus, decoys (if sold) may deplete
a buyer’s budget. Voters who know that they have a decoy
ballot are motivated to sell their ballots to a buyer, both for
reasons of profit and out of civic duty, wanting to maintain
the integrity of an election. Decoy ballots have been sug-
gested by Chaum [4], but we are not aware of any analysis
of how decoy ballots should be distributed, and how effective
they are against vote buying.

We assume that real ballots impose a very high cost on
society, for the reason that it takes effort for members of
society to become informed about an issue and vote appro-
priately, thus representing their considered opinion on an
issue.! Without the willingness to invest this effort, meth-
ods of participatory democracy may ultimately fail. For
example, a simple calculation for the US shows that if we as-
sume that 200M people will participate, and there are about
12,000 issues to decide per year,? then assuming that voters
are willing to engage three times a year, we have a maxi-
mum of 50,000 voters per issue. At this scale, vote buying,
especially on contentious issues, may pose a severe problem.

Turning to decoy ballots, we model these as costly but
not so costly that the number of decoys to distribute cannot
be considered as a design decision of the Election Authority.
The cost of decoys comes about because, to be effective,
voters need to be willing to go to the effort to sell the ballot
(and thus, cast the ballot and prove which way it was cast)
if approached by a buyer. But because any ballot cast is not
ultimately counted, there is less emphasis on a voter needing
to research an issue to form an opinion.

Although we situate our discussion in a societal context,

'In some approaches, this cost comes about, in addition, as
a result of needing to physically mail ballots [4].

2This represents the approximate voter population and the
number of issues before Congress per year, assuming 2 issues
per bill.
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Figure 1: Examples of type distribution f(6), decoy distribution (0), and desirability to buyer h(6) for (a) an
optimal defense, (b) a civic duty defense with max type requesting a decoy zc = 0.5 and 10% decoy ballots, (c)
an auction-based defense with max type assigned a decoy z, = 0.5 and 50% decoy ballots. Here f = Beta(1l,2).

similar themes can be easily imagined for economies of Als [12],

where it is desired to elicit and fairly aggregate multiple
opinions, but would not be scalable to request input from
every agent all the time.

Our Contributions

We provide a formal model of vote buying, including a char-
acterization of the vote buyer’s behavior and an optimal pol-
icy for distributing decoy ballots by the Election Authority
(EA). In addition, we model two societal processes by which
decoys could be distributed—these approaches freeing the
EA of any concern that it could be seen to be biasing the
outcome of an election when distributing decoys in any way
other than reflecting a random sample of the population. In
simulation, we show that the EA can make effective use of
decoy ballots to maintain election integrity (e.g., reducing
the probability that the buyer changes the outcome to less
than 1%). For the optimal defense, we are able to achieve
this by adding a small number of decoys that are propor-
tional in quantity to the number of ballots the buyer can
afford to buy. Interestingly, a “civic duty defense” that allo-
cates decoys to a random subset of those who request one is
almost as effective as the optimal defense in which the EA
optimizes the distribution of voter types that receive decoys.

Related Work

There are numerous studies on vote buying, for example [8,
15,16,19]. These include game-theoretic models of vote buy-
ing, but none that consider the role of decoy ballots. In
Dekel et al. [6], the game is played by the candidates them-
selves buying votes, Groseclose and Snyder [10] study vote
buying in legislative bodies and analyze the optimal coali-
tion size. Vicente [18] studies the incumbency advantage
in a vote buying game. Within AI, the problem studied
here related to studies of control (manipulation of the elec-
tion structure, including changing the candidate slate) and
bribery (voters are paid by an interested party to vote a
certain way) as studied in computational social choice [2,7].
In particular, the lobbying problem considers an election
with a binary outcome on a number of issues, and the vote
buyer has a total budget that can be expended across all
issues [1,3,5]. Ours is a special case with a single issue, but
whereas previous research has focused on using computa-
tional complexity as a barrier against bribery and control,
we adopt a game-theoretic model and study the power of
decoy ballots. There is also a conceptual connection with
work on security games [17], where the approach is to use
game theory to design optimal strategies to prevent losses

from terrorist attacks.

2. THE MODEL

We assume that there is a large population of possible vot-
ers, and that this is a binary choice election with possible
votes YES and NO. For expositional simplicity, we assume
that all voters who receive a real ballot will place a vote.
Similarly, we assume that every voter for whom it is prof-
itable to sell a ballot (decoy or otherwise) will try to sell the
ballot.?

The voters. Each voter ¢ has an immutable, publicly-
observable woter type, 6;, which indicates the probability
that a random voter with this type will vote YES. We can
think about 6; as the prior that a voter will vote YES be-
fore she has carefully considered the merits of an issue. Voter
types are drawn IID from a voter type distribution with prob-
ability density f, assumed to have full support on [0, 1]. We
assume without loss of generality that E¢[0] < 1/2, i.e.,
that the outcome of the election without any interference by
a buyer and with enough real ballots is NO.

The buyer. We model a single, budget-limited buyer.
Given our assumption that E¢[0] < 1/2, we consider the in-
teresting case of a YES-buyer, meaning that the buyer wants
the election outcome to be YES. To keep things simple, we
assume the buyer can find the voters with ballots, and will
offer the same price p > 0 to some subset of these voters.
The buyer has a budget B, representing the number of bal-
lots that he can afford to purchase at price p, and has no
utility for unspent budget. The buyer selects a random sub-
set of voters if more respond to the offer than he can afford.

Conditioned on whether a voter’s intent is to vote NO or
YES, and whether they have a real or decoy ballot, all voters
have the same utility function in regard to whether or not to
sell. In particular, simple analysis yields that this ordering
of the minimum price that a voter will require in order to
agree to sell a ballot is real-NO > real-YES > decoy-YES >
decoy-NO. For example, any price that is acceptable to a
“real-YES” voter (real ballot, intent to vote YES) is also
acceptable to “decoy-YES” and “decoy-NO” voters. Ballots
from decoy-NO voters are the cheapest to buy.*

31t is simple to generalize the model so that the people who
actually cast ballots are sampled uniformly from those who
receive ballots, and similarly for those who try to sell ballots.
4To understand this ordering, consider that a voter with a
real ballot has a cost for selling, representing the possibility
of being caught. In addition, voters that intend to vote
NO prefer not to change their vote and vote YES. Thus,
these are the most expensive votes to buy. Analogously,
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Figure 2: Comparing the power of different defenses, with f = Beta(2,4), 1000 ballots in total (some real,
some decoy), and different buyer budgets B. (a) Optimal defense, varying the fraction of real ballots. (b)
Civic duty defense, with the EA optimizing the number of decoy ballots to use for each value of parameter zc
(the ‘max type requesting decoy’). (¢) Auction-based defense, with the EA optimizing the number of decoy
ballots to use for each value of parameter z, (the ‘max type assigned a decoy’).

Based on this, the real-NO votes—and the only ones the
buyer is interested in—are the most expensive ballots to buy.
Because of this, we assume the buyer will set price p high
enough for a real-NO voter to agree to sell if approached.
This could be set based on market research, for example.

The game form. The voters who receive a real ballot are
a random subset of the population, and thus with types that
follow f. The choice of how to distribute decoy ballots is, in
general, a design decision of the EA. Let v denote the den-
sity function for this decoy ballot distribution. Modeled as
a sequential-move game, we view the election as proceeding
in the three stages:

(1) the EA distributes some number of real and decoy
ballots, with the number and type distribution of real ballots
assumed fixed, but the number of decoy ballots, and perhaps
type distribution v a design decision.

(2) the buyer learns who has received a ballot (possibly a
decoy) and chooses to offer price p to some subset of voters
who have (real or decoy) ballots. The voters who receive an
offer decide whether or not to sell. The buyer breaks ties at
random if multiple voters agree to sell.

(3) Both real and decoy ballots are cast, and the real bal-
lots are tallied to determine the outcome. The buyer makes
payments to voters who agreed to sell and provide a proof
that they vote YES®.

We assume that f and the type of each voter is common
knowledge. Our analysis will focus on the subgame perfect
equilibrium of this game. Throughout, the voters have a
simple equilibrium behavior—agree to sell if offered price p
(which will, in equilibrium, be high enough to be accept-
able.)

Proof of decoy. We assume the existence of a proof-
of-decoy, which lets a voter with a decoy prove to anyone
that she has a decoy. On the other hand, there is no way to
prove the authenticity of a real ballot. This property is easy
to support through standard cryptographic primitives; see,
for example, Chaum [4].°

decoy-YES ballots are more expensive to buy than decoy-
NO ballots because a voter who would vote NO (if she had
a real ballot) has higher value for depleting the budget of a
YES-buyer than a voter who would vote YES.

SVoters could provide proof of the way that they voted to
the buyer by, for example, sending a video of themselves
casting the vote or a photograph of their ballot.

SThe asymmetry in proof-of-decoy but no proof-of-

EA and Buyer objectives. We take as the objective of
the EA that of maintaining election integrity, and thus min-
imizing the probability that the buyer changes the election
outcome. In contrast, the interests of the buyer are diamet-
rically opposed, and he wants to maximize the probability
that the outcome of the election is changed.

3. BUYER ANALYSIS

Given the buyer’s objective, the best response of the buyer
to the EA is to maximize the expected number of real-NO
ballots that he buys, given his budget B and knowledge
about voters’ types (probability of voting YES). Let Z C
[0,1] denote the subset of voter types from which the buyer
buys; in particular, the buyer will buy every ballot held
(real or decoy) by voters of these types. Let n, denote the
number of real ballots and ng the number of decoy ballots.
The buyer wants to select the subset Z to solve:

ny ‘
mIaLx/Z P (1—0)f(6)do s.t./znrf(ﬂ) + nayp(0)dd < B.

In this way, the buyer maximizes a quantity that is propor-
tional to the expected number of real-NO ballots purchased,
subject to the total budget. Let h(f) denote the probability
that a ballot is real-NO given type 6. By Bayes’ rule, and
recalling that the buyer has knowledge of f and 4, this is

nr(1 —0)f(0)
w0 @Y
Given a set I C [0,1], let h(I) denote the set {h(8)} for

6 € I. Let h(I1) < h(Il2) mean that every value in Iy is
strictly less than every value in Is.

def

h(8) = P(real ANO|0) =

LEMMA 1  (BUYER OPTIMALITY). The optimal buyer
strategy in the subgame perfect equilibrium is to buy in order
of decreasing h(0) until the budget is exhausted.

Where proofs are omitted, this is because of space. They
will be provided in the long version of the paper. We assume

authenticity is important in preventing a buyer from using
coercion to buy only real ballots, while at the same time
allowing a voter with a decoy ballot to sell with impunity
to accusations of acting against the social good (since she
can, if challenged to do so, prove that it is decoy, and thus
that she is acting in good faith.) A voter will never choose
to reveal that she holds a decoy to a buyer, since doing so
would just cause the buyer to refuse to transact with her.



w.l.o.g. that if a YES-buyer has to choose between buying
two subsets of [0,1] for which h(6) is equal, he will buy
the subset with lower 6. Let 9t %' J; f(6)d0 denote the
fraction of real ballots that the buyer buys. By ‘election
bought’, we refer to the event that the buyer buys enough
real ballots to change the outcome (with n, real ballots);
by ‘correct outcome is NO’, we refer to the event that the
election outcome is NO (with n, 4+ ng real ballots).

LEMMA 2. The probability that the buyer changes the out-
come in the subgame perfect equilibrium is given by

P(buyer changes outcome)

= P([election bought] A [correct outcome is NO]) =~

P(nT(l —2001—2(1 — M)py) <7< (1 —=2u)vnr +na
2y/n (1= M)py (1 — py) 2y/p(1 = p)

def

where  Z ~ N(0,1), u= Ef0], and py =

51 Sioi g 05 (6)d6.

This allows us to compute the probability the buyer changes
the election outcome, which is determined by the fraction of
real ballots that he is able to buy given a defense.

4. OPTIMAL DECOY DISTRIBUTION

In this section, we assume that the EA can design defense
distribution ¢, and study the equilibrium of the vote-buying
game where the EA chooses an optimal defense given that
the buyer will best respond.

DEFINITION 1
canonical if there is some z, 0 < x < 1, s.t.
min(l —z,1 —6).

(CANONICAL DEFENSE). Defense 1) is
h(8) =

See Figure 1(a) for an illustration of a canonical defense,
and Figure 3 for an illustration of the model. Let supp(g)
denote the support of distribution g. Define the following
two properties for -

(P1) h(6) has the same value for all 6 € supp(¢)).

(P2) mingesupp(y) h(0) > maxggeupp(y) M(0)

LEMMA 3. Any defense v satisfying both P1 and P2 is
canonical.

LEMMA 4. If the buyer buys all ballots in supp(y), then
there is a canonical defense 1" with the same value.

Lemma 3 characterizes canonical defenses in terms of the
properties defined above. Lemma 4 shows that if the buyer
can buy up all decoys, then how they are distributed no
longer matters. Fixing the number of real ballots n,, the
EA’s remaining choices are about ng and ¢. We now state
our main characterization result.

THEOREM 1. For a given n,, nq, and buyer budget B, the
optimal strategy of the EA in the subgame perfect equilibrium
is canonical.

ProOF. Assume for contradiction, that there is a non-
canonical ¢ that is better than any canonical defense. Let
k be an index, and consider a sequence of defenses {1} =
{0, 1, ...}, where wd:‘?f 1. We will show that we can define
a finite sequence that obtains a canonical defense at least as

Election Authority [] real ballot

decoy ballot

decoy ballots

real ballotsl f(&) 1/;(9)
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Figure 3: Real ballots, distributed according to f(6),
and decoy ballots, distributed according to ¢(0), are
given to voters by the EA. In an optimal defense, de-
coys are assigned with higher propensity to the voter
types that are a priori more attractive to the buyer,
thus forcing the buyer to also deplete his budget on
decoys.
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Figure 4: Comparing the power of various defenses
for f = Beta(2,4), zc and z. = 0.5, and 1000 total
ballots.

good as 9. Let hi(0) denote the function h that corresponds
to Q/Jk

Let Zy, C [0, 1] denote the set of intervals that are best for
the buyer given 15, (solving for the buyer’s objective subject
to his budget). If the buyer buys all ballots in supp(yx),
then by Lemma 4, we can modify ¥, to form a canonical
Pr+1 with the same value, and we are done.

Suppose otherwise, and that in addition 15 does not sat-
isfy P1 and P2. That is, we have:

(P0O) the buyer does not buy all ballots in supp(¢x ), and
one or both of

(= P1) hi(0) takes on multiple values for 6 € supp(¢x)
(= P2) mingeupp(usy) 1 (0) < maxXogsupp(yy) b (0)-

By PO, we can construct some interval S, C supp(¢x) (the
source set), where the buyer is not buying all ballots, and an
interval Ty, C Zy (the target set), such that hy(Sk) < hi(Tk)



(and thus, Sy N Tx = @). Let Ry = supp® \ Zr be the
remaining subset of supp(¢) that the buyer is not buying.
We must have arg minge gy, ) ik (0) € Ri. The existence
of Ty, follows from —P1 because 30 € Z; for which h(8) >
MiNgegupp(yy) Pk (0) (the existence is guaranteed by values of
0 € supp(¢x) that are greater than the minimum), and thus
we have maxger, hi(8) > mingegupp(yp,) bx(6). If 2P2, then
by buyer optimality (Lemma 1), arg mingeq,pp(y,) 6(0) C
Rj.. In both cases, arg mingesuppwk) hi(0) C Sk.

We pick €g,er > 0 to define a move of a uniform slice of
1 density from Sk to Tk such that,

(1) f@esk max(0, ¥, (0) — es)dd = feeTk er df [mass con-
servation]

(i1) hr41(Sk) < hrt1(Tk) [target set still preferred by buyer
to source set]

By continuity (except possibly on a set of measure 0) of
h(6), such an eg,er pair that satisfies (ii) exists. We ar-
gue that Sy N Zxy1 = @. Before the ¥ mass is moved,
we have min hy(Zx) > hi(Tx) > hie(Sk). After the move,
we have minhk+1(Ik+1) > hk+1(Tk) > hk+1(Sk). The in-
equality is because the buyer can always exhaust his bud-
get by buying Z,. Thus, we know that the buyer does not
buy anything in Si after the ¥ mass has been moved. Let

Qr Y Jz, (1= 0)f(0)d. Thus, we have Qi1 < Qi be-
cause the only set on which hgy1(0) > hi(6) is Sk. In ad-
dition, mingesupp(y,) fk(0) < minpesupp(yy 1) be+1(0). Be-
cause Yk € ZT, 6 € [0,1], h(8) > 0 the sequence must be
finite. [

Theorem 1 says that for a given n, and ng, the optimal
design of 1) by the EA is canonical. The next result shows
that ¢ (and its support, which is [0, ], “o” for optimal) can
be easily computed given any n, and ng.

THEOREM 2. For any given n, and ng, the optimal de-
fense of the EA in the subgame perfect equilibrium is given
by a decoy ballot distribution with density function

nr (zo—0)f(0)
w(o)= i Jorvelld Ty
0 for 8 € (zo,1]

where the threshold x, is determined by the following equa-
tion: 171% Jo P F(0)do = 7+ and F(0) is the CDF of f.

With this expression, we can determine the power of in-
creasing the number of decoys, ng, for any voter type distri-
bution f, buyer budget B, and number of real ballots n,.

S. NEUTRAL APPROACHES

In this section, we consider defenses where the EA does
not design 1, since doing so may be argued as the EA playing
too active a role in running the election. Beyond neutrality,
these new approaches have the additional advantage of not
relying on the EA having knowledge of f.

5.1 A Constrained Defense

We first consider a constrained defense:

DEFINITION 2. Defense 1 is constrained if the EA dis-
tributes decoy ballots uniformly at random, i.e., ¥ = f.

Having a constrained defense implies that h(6) = - (1
0) and Z = [0, 7¢] for some ¢ > 0, such that the budget is

spent, i.e., F(r¢) = B/(nr 4+ na).

DEFINITION 3 (Low BUDGET). A low budget is a bud-
get where f:c 0f(0)do < 5 — F(7c).

DEFINITION 4  (HiGH BUDGET). A high budget is a bud-
get where f:c 0f(0)do > % — F(7c).

In words, for a buyer with a low (high) budget, the ex-
pected number of real ballots the buyer buys is lower than
(exceeds) the amount needed to change the election out-
come.

One way to study the power of a constrained defense is
to consider the following question: if the total number of
ballots is fixed, what is the optimal mix of real and decoy
ballots?

THEOREM 3. Fizing the total number of ballots, the best
constrained defense for the EA in the subgame perfect equi-
librium s all (one) real ballots for low (high) buyer budget
under the Normal approzimation (2).

With a low buyer budget, while a constrained defense
makes the buyer buy some decoys, it also leaves unpurchased
decoys and reduces the number of unpurchased real ballots,
decreasing the accuracy of the result. Thus, decoys are not
useful for the EA in this case. On the other hand, the best
that the EA can do with a buyer with a high budget is to
issue a single real ballot, with the hope that the buyer won’t
buy it, resulting in a high variance outcome based on the
vote of a single voter. Decoys are used, but not to good
effect.

5.2 Civic Duty Defense

In this model, the EA makes decoy ballots available to a
random subset of those voters who make an explicit request
for a decoy.” The decision of the EA is thus the number of
decoy ballots, but not how to distribute them. Rather, this
decision arises through a simple model of a societal process.

In modeling this process, we assume that, for a YES-
buyer, there is some distribution of civic-mindedness 7(0),
with support on [0, zc], that determines the probability that
a voter will request a decoy, where z. is a fixed, publicly
known quantity (“¢” for civic). In particular, we assume for
simplicity that 7(f) o x. — 6. This captures the idea that
the more extreme an agent’s type, the more likely the agent
is to request a decoy and thus help preserve the election’s
integrity.

Via Bayes’ rule, the effect on the distribution on types
1 of those who get decoys is ¥(0) = P(f|request decoy) o
P(request decoyl|0)f(0) = w(0) - f(0) = (xzc — 0)f(0).

In fact, there will sometimes be a choice of ng such that
the civic duty defense is optimal. If the EA can choose a
number of decoys ng such that @ =k, where k is the
normalization constant, then we see 'the canonical structure,
with h(0) = 1—x¢, VO € [0, z:]. We call the defense obtained
via this model a civic duty defense. An example of this
defense is illustrated in Figure 1(b).

"For the purpose of both this model and the next, we assume
it is prohibitively costly for a buyer to acquire multiple, cred-
ible real-world identities in order to attack these distribution
mechanisms.
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Figure 5: Using decoys to thwart vote buying, for different buyer budgets (the number of ballots the buyer can
buy). The number of real ballots is 750, the voter type distribution is f = Beta(2,4). (a) constrained defense,
in which decoy ballots are distributed according to f(6); (b) optimal defense; (c) auction-based defense with

za = 0.5; (d) is civic duty defense with zc = 0.5.

5.3 Auction-Based Defense

In this variation, the EA makes decoy ballots available to
voters via an auction. We assume a simple ng+1st price
auction (when selling nq decoy ballots), with the EA choos-
ing ng. The intent is not to model a sophisticated auction,
but to adopt a strategyproof mechanism as a model for an
idealized market-based approach for distributing decoy bal-
lots to voters. The effect is that decoys go to voters with
the highest value for decoys. As with the civic duty defense,
the EA who makes use of an auction-based defense chooses
the number of decoy ballots but not how to distribute them.

In modeling this societal process, we assume that the value
to a voter for a decoy is monotonically increasing as the
voter’s type 6 gets closer to zero.® For this reason, we model
the effect of the auction as being that there is some threshold
x4 € (0,1), whereby the decoys are distributed according to
voter type distribution f, conditioned on 0 < z, (“A” for
auction). In particular, for 6 € [0, z,], we have ¥(0) < f(0).

6. SIMULATION RESULTS

We describe the results of an extensive simulation study
to compare power of various defenses in preventing a buyer
succeeding in changing the outcome of an election. We
choose to present results for voter type distribution f =
Beta(2,4), but the analysis is qualitatively unchanged for
other distributions, including those with mean voting types
in [0.01,0.49] (e.g., voter type distribution Beta(9,11), which
is quite concentrated around the mean of 0.45).

8We insist, though, that the reasonable property holds that
a voter’s value for using a decoy is less than her value for
a real ballot, and thus this auction-based societal process
is consistent with our analysis in Section 2 in regard to the
ordering of minimum acceptable offer price from a buyer
across different kinds of voters.

Figure 5 fixes the number of real ballots, and shows that
vote buying can be successfully thwarted by issuing suffi-
ciently many decoy ballots. The optimal and civic duty de-
fenses are most effective, but even issuing decoys according
to the auction-based and constrained defenses substantially
reduces the probability of a vote buyer’s success. It is inter-
esting that even a small number of decoys, relative to the
number of real ballots, can be effective.

It also helps with understanding to compare the power of
different defenses when fixing the total number of ballots,
some of which will be real and some decoys, and varying
the number of decoy ballots. Figure 2(a) shows the effect of
varying the fraction of real ballots when using an optimal
defense. Figure 2(b) shows that the effect of the civic duty
defense for different values of model parameter z (the ‘max
type requesting a decoy’), and with the EA optimizing the
number of decoys for each value of z.. Figure 2(c) shows
the effect of the auction-based defense for different values of
model parameter z, (the ‘max type winning a decoy’), also
with the EA optimizing the number of decoys for each value
of x,. The auction-based defense is the least effective, but
even here there is a range of x, for which the performance is
better than without using any decoys. In Figures 2(b) and
2(c), a maximum type of 0 receiving a decoy corresponds
to zero decoys. Also fixing the total number of ballots, we
examine the relative power of the different defenses as a
function of the buyer budget. In Figure 4 (with 1000 total
ballots) we see that an optimal defense can use decoys to
protect against buyers with around twice the budget of a
‘no defense’ approach that just uses all real ballots. For the
civic-duty and auction-based defenses, we fix z. = x, = 0.5
and pick the best ng at each point in the graph. The auction-
based defense is better than no defense or the constrained
defense. The civic-duty defense has very good performance
that is almost the same as that of the optimal defense for



many buyer budgets.

7. CONCLUSION

We have presented the first game-theoretic study of the
power of decoy ballots in thwarting vote buyers. We have de-
rived a characterization of the form of an optimal defense,
and compared its power to those of neutral defenses that
could be enabled through leveraging simple societal pro-
cesses to distribute decoy ballots. Our results are positive:
decoy ballots are effective in thwarting the power of a vote
buyer. Amongst the neutral defenses, the civic duty defense,
where decoys are given at random to a subset of those who
request such a ballot, seems especially interesting for future
study. Also of interest is to study defenses under the re-
quirement that they must protect equally against a YES-
or NO-buyer, when there are more than two ballot choices,
multiple buyers, simultaneous polls, and participants with
value and cost heterogeneity.
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