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ABSTRACT
We study the diffusion of opinions on a social network as an
iterated process of aggregating neighbouring opinions. In-
dividual views are modelled as vectors of yes/no answers
to a number of propositions connected by an integrity con-
straint, and each individual updates her opinion by looking
at the aggregated opinion of her influencers. We propose
and compare two alternative methods for such a process.
The first simply ignores the inconsistent aggregated opinion,
while the second performs propositionwise revisions whilst
maintaining consistency. We characterise the set of integrity
constraints that allow individuals to reach the aggregated
opinion of their influencers by means of propositionwise up-
dates, and we study under what conditions the termination
of the two proposed processes can be guaranteed.

CCS Concepts
•Computing methodologies → Multi-agent systems;

Keywords
Social networks, judgment aggregation, opinion transforma-
tion, axiomatic method, strategy-proofness

1. INTRODUCTION
When faced with the opinions of others over multiple issues,
people will often be influenced to change their own opinions
in line with the opinions of their influencers. Social influ-
ence describes the effect one person’s opinion can have on
the opinions of those around her, and in formal models of so-
cial influence, is often represented by means of an influence
or trust network. Taking inspiration from game-theoretic
models of social influence on networks [15, 14], a number of
diffusion methods have been proposed for complex represen-
tations of individual opinions, such as preferences [3], beliefs
[29], or judgments [17]. A common characteristic of all these
settings is that changes in agents opinions are driven by the
aggregate opinions of their influencers in the trust network.
Thus, each agent has some initial opinion that might change
if the agent is connected to others in the network who dis-
agree with her on one or more issues.

Appears at: 4th Workshop on Exploring Beyond the Worst Case in
Computational Social Choice (EXPLORE 2017). Held as part of the Work-
shops at the 16th International Conference on Autonomous Agents and
Multiagent Systems. May 8th-9th, 2017. Sao Paulo, Brazil.

In complex settings, when individual opinions are formed
on multiple interconnected issues, a diffusion process needs
to carefully account for the constraints that relate the issues
at stake. Recent work in the diffusion of beliefs [12] realised
the importance of considering integrity constraints on the
set of opinions held by individuals. One of the central prob-
lems in this setting is the design of individual updates when
there are certain dependencies between issues, and aggre-
gating opinions might not always result in a rational opin-
ion. Consider a voter in the U.S. that will vote for Donald
Trump unless at least one of the following three conditions
are true: (a) Trump will actually build a wall separating
the U.S. from Mexico, (b) Trump was supported by Russia
in his campaign, and (c) Trump will continue to manage his
company during his presidency. Such a voter may be faced
with a third of her influencers believing only (a), a different
third believing only (b), and the remaining third believing
only (c). Hence, the voter can safely go ahead and vote for
Trump, since for each condition there is a two-third majority
of her influencers that is of the opinion that the statement is
false. However, none of her influencers vote for Trump, since
they all believe in at least one of the three conditions. How
should such an agent update her opinion, and what kind of
opinion updates might lead the agent to change opinion on
her vote?

In this paper we represent opinions as binary vectors,
building on work by Grandi et al. [17], generalizing this
setting to take into account possible correlations among the
issues at stake. We represent such correlations by means of
an integrity constraint, which prevents agents from holding
certain opinions over the set of issues. The addition of the
constraint to the framework is problematic in some cases, as
it prevents certain changes in opinion.

Related work.
Diffusion on networks has been extensively studied in the
field of social network analysis, be it diffusion of diseases,
information, or opinions [20, 8]. Some of these models are
developed to deal with the diffusion of individual opinions, in
which individual views are updated by averaging the views
of neighboring individuals. Two classical such examples are
threshold models [18], with its more recent generalisations
[22, 23], and the De Groot or Lehrer-Wagner model [5, 25],
which are however based on a simple representation of opin-
ions as a binary view on a single issue, or a real-valued view
in the interval [0, 1]. Of particular interest is the recent work
of Friedkin et al.[12], which studies the propagation of real-
valued beliefs over multiple issues interconnected by logical



integrity constraints.
Building on this literature, a recent stream of papers have

adapted averaging models to more complex and realistic rep-
resentations of opinions: knowledge bases [29, 30], prefer-
ences over alternatives [13, 3], and binary evaluations [17].
The latter paper used techniques from judgment aggregation
(see, e.g., [19, 10]) and binary aggregation [16], representing
opinions as vectors of binary views on uncorrelated issues,
obtaining a diffusion model assimilable to that of threshold
models. We build on this latter paper by adding a con-
straint connecting the multiple issues at stake, tackling the
non-trivial problem of updating individual opinions towards
one that does not satisfy the constraint.

We mention in passing that a logical perspective on dif-
fusion in social networks has been explored in a number of
papers (see, e.g., [2, 4, 31]). The strategic aspects of dif-
fusion have been studied in the related setting of product
adoption [32, 1], which however mostly focuses on threshold
models on uncorrelated products. Finally, our axiomatic
analysis draws inspiration from the work of Miller and Os-
herson [27], Knight and Johnson [24], and Dryzek and List
[7], who use the notion of inter-agent communication as a
mean of reconciling ideas from deliberative democracy with
those from social choice.

Paper overview.
The paper is organised as follows. In Section 2 we define
two mechanisms for opinion diffusion with constraints on a
network. In Section 3 we examine the characteristics of the
opinion profiles which result from each of the two mecha-
nisms and in Section 4 we study the termination of the iter-
ative diffusion processes we defined. In Section 5 we study
strategic aspects of the diffusion processes, and in Section 6
we propose an axiomatic study of diffusion as a judgment
transformation function. Section 7 concludes the paper and
points at directions for future work.

2. THE GENERAL FRAMEWORK
In this section we present two models of opinion diffusion
in the presence of an integrity constraint. The first is a
straightforward generalization of the process of propositional
opinion diffusion [17]. The second is instead based on up-
dates to single issues. We represent agents’ opinions as an-
swers to a set of yes/no questions which are possibly con-
nected by means of an integrity constraint. We model the
social influence network as a directed graph.

2.1 Individual Opinions
Let I = {p1, . . . , pm} be a finite set of m issues (or propo-
sitions), where each issue represents a binary choice. We
call D = {0, 1}I the domain associated with this set of is-
sues. For a finite set of agents, N = {1, . . . , n}, we say
Bi ∈ D is the opinion of agent i ∈ N over all issues in I.
A vector B ∈ DN of all opinions of agents in N is a profile.
Each opinion B represents an agent’s acceptance/rejection
of each of the issues in I. For example, if our set of issues is
I = {p, q, r}, then B = (110) is the opinion which accepts
the first two issues p and q and rejects the third issue r. We
call flip(B, p) the opinion resulting from changing the judg-
ment on p in the opinion B. In our example above where
B = (110), flip(B, p) = (010).

We write Bi(p) to mean agent i’s judgment on p ∈ I in
the profile B. Thus if B = (110), then B(p) = B(q) = 1

and B(r) = 0. We write B =−i B
′ to mean two profiles B

and B′ are identical if we ignore agent i’s opinion.
An integrity constraint IC ⊆ D defines a domain of feasi-

ble opinions. For instance, if we have three issues, p, q and r,
and each agent can only accept at most two of the three, then
IC = {(110), (011), (101), (100), (010), (001), (000)}. Integrity
constraints are often represented compactly by means of a
formula of propositional logic, such as (¬p∨¬q∨¬r) for the
previous example. Issues of succinctness and computational
complexity are out of the scope of this paper, hence we as-
sume a set-theoretic representation of feasible opinions. For
each agent i, we assume that Bi ∈ IC, meaning each indi-
vidual opinion must satisfy the given rationality constraint.

2.2 The Social Influence Process
We assume that agents are connected by a social influence
network G = (N , E) where (i, j) ∈ E means agent i influ-
ences agent j and Inf(i)G = {j ∈ N | (j, i) ∈ E} is the set
of influencers of agent i in the network G. Observe that we
do not make any assumption on whether i ∈ Inf(i), defining
the framework in full generality.

The first update procedure we propose is a direct general-
isation of the propositional opinion diffusion (F -POD) pro-
posed by Grandi et al. [17], in which agents simply aggregate
the opinions of their influencers using some judgment aggre-
gation functions F = (F1, . . . Fn)—where Fi : ICInf(i) → D
is the rule agent i uses—and copy this aggregate opinion
only if it satisfies the integrity constraint IC. Each step of
the process is done according to the function POD. This
function takes as input a network G, a profile of opinions
B ∈ DN and an agent i ∈ N . Note that we assume Fi is
resolute, meaning the function outputs a single opinion, and
we do not require the outcome of Fi to be a model of the in-
tegrity constraint. The POD function returns the updated
opinion of i according to her aggregation rule:

POD(G,B, i) =

{
Fi(BInf(i)) if Fi(BInf(i)) ∈ IC

Bi otherwise.

We propose an alternative update, propositionwise opinion
diffusion (F -PWOD), in which each agent updates on one
issue at the time, provided that the updated opinion is con-
sistent with the constraint. The function takes as additional
argument the issue p ∈ I which agent i updates.

PWOD(G,B, i, p) =


flip(Bi, p) if Fi(BInf(i))(p) 6= Bi(p)

and flip(Bi, p) ∈ IC

Bi otherwise.

The two processes can result in two different updates, as
the following example shows:

Example 1. Three agents A,B,C, are voting on multi-
ple refenda. They need to give opinions on three proposals;
more parks in the city center, a homeless shelter and road
repairs. Because of budget constraints, they can approve at
most two of the proposals. Suppose the individuals are con-
nected in the following social influence network, where the
initial profile is B = (110, 011, 101), meaning A wants the
parks and a homeless shelter, B wants the homeless shelter
and road repairs, and C wants more parks and road repairs.



A : 110 B : 011

C : 101

Assume for each agent i, that Fi is the strict majority rule,
accepting an issue only if a strict majority of the individu-
als accept it. If all agents update using the F -POD func-
tion, the resulting profile after one update will be B′ =
(110, 011, 011). If each agent uses the F -PWOD function
instead, and we suppose they all update on the first issue,
we get a different outcome after the first iteration—B′ =
(110, 011, 001).

2.3 The Iterative Process
A permissible transformation associates a profile of individ-
ual opinions with one of the possible outcomes of either a
F -POD or an F -PWOD update:

Definition 1. Let a network G, an integrity constraint
IC, and a set of aggregators Fi for i ∈ N be given. We
say there is a permissible F -POD transformation from pro-
file B to profile B′ if there exists I ⊆ N such that B′i =
POD(G,B, i) for all i ∈ I, and B′j = Bj for all j 6∈ I.
Analogously, there is a permissible F -PWOD transforma-
tion from B to B′ if there exists I ⊆ N and pi ∈ I for each
i ∈ I such that B′i = PWOD(G,B, i, p), and B′j = Bj for
all j 6∈ I.

We say that a permissible transformation is effective if
there is some i ∈ N such that Bi 6= B′i. We further say that
a profile B is a termination profile if no effective transforma-
tion exists. An agent’s opinion Bi is called stable on a net-
work G (wrt. F ) in profile B if for any p, F -PWOD(G,B, i, p) =
Bi. Thus, a termination profile is a profile in which all in-
dividual opinions are stable.

Both F -POD and F -PWOD update functions can be
used to define diffusion processes with discrete time. Let
turn : N → 2N be a turn function, indicating at each point
in time t what are the agents that are updating their opin-
ions. Let Bt = (Bt

1, . . . , B
t
n) be the profile of opinions at

time t. At time t + 1, all and only the agents in turn(t + 1)
will perform an F -POD update aggregating the opinions of
their influencers:

Bt+1
i = POD(G,Bt, i).

An additional ingredient is required for F -PWOD. Let
propi : N → I for each i ∈ N be a function which tells us
which proposition agent i is allowed to update at any time t.
At each time t all agents in turn(t) update their opinion
according to the aggregated opinion of their influencers at
time t− 1 on issues propi(t):

Bt+1
i = PWOD(G,Bt, i, propi(t + 1))

for all i ∈ turn(t + 1). Following Definition 1, there is a
permissible transformation between each step of the diffu-
sion process, i.e., each pair of profiles Bt and Bt+1. Observe
that if B is a termination profile and at time T we have that
BT = B then it is the case that Bt = BT for all t ≥ T .

3. TERMINATION PROFILES
In this section we focus on the properties of termination
profiles and under which conditions F -POD and F -PWOD
result in the same termination profiles. We characterise the
set of integrity constraints for which F -PWOD termina-
tion profiles agree with the outcome of the respective aggre-
gation functions, and we show that for both F -POD and
F -PWOD, an agent’s opinion at termination may be very
distant from the opinions of her influencers.

3.1 Integrity Constraints with Open Structure
Given two opinions B and B′ ∈ D, recall that the Hamming
distance between them is H(B,B′) = Σp∈I |B(p)−B′(p)|.

Definition 2. An integrity constraint IC has an open
structure if for any two opinions B,B′ ∈ IC where H(B,B′) =
k, there is some sequence of distinct opinions B1, . . . , Bk+1—
all in IC—such that B1 = B, Bk+1 = B′, and H(Bi, Bi+1) =
1 for all 1 ≤ i ≤ k.

To visualise the idea underlining the above definition, we
model the opinions on a hypercube. An edge between any
two nodes means the Hamming distance between them is
1. An integrity constraint has an open structure if any two
nodes at distance k are connected by a path of length ex-
actly k.

Example 2. We represent all opinions in the graph be-
low, connecting only those that satisfy IC with a continu-
ous edge. Let IC = {(000), (001), (010), (100), (011), (111)}.
This integrity constraint does not have an open structure,
and this can be visualised on the figure: the shortest path
available between (100) and (111) is of length 4, which is
strictly greater than the Hamming distance between the two
models H(100, 111) = 2.

000

001

010

011

100

101

110

111

An important class of integrity constraints that has an
open structure is the one used to represent preferences as
linear orders over a set of alternatives (see, e.g., [28]). Let
us see this example in details. Let A be a set of alternatives,
a linear order is an irreflexive, transitive and complete binary
relation over A. A linear order � can be represented as a
binary evaluation over a set of issues IA = {pab | (a, b) ∈
A×A and a 6= b}, such that B(pab) = 1 if and only if a � b.
For each pair (a, b), we only include one of pab and pba in
the issues as rejecting pab in a linear order is equivalent
to accepting pba and vice versa. The integrity constraint
IC� therefore contains all opinions over IA corresponding
to linear orders over A.1 We can now prove the following:

Proposition 1. IC� has an open structure.
1Representing preferences with binary evaluations is an idea
that can be traced back to the work of Wilson [33].



Proof. Let B and B′ be two distinct opinions in IC�
such that H(B,B′) = k, and let≺ and≺′ be the correspond-
ing linear orders. Since the two orders≺ and≺′ are different,
they also differ on pair which is adjacent in one of them, i.e.,
there exists a pair ab such that B(pab) 6= B′(pab) and there
is no c ∈ A such that a �i c �i b or b �i c �i a.2 Swapping
an adjacent pair in a linear order results in a binary rela-
tion that still is a linear order, hence flip(B, pab) ∈ IC�. By
repeating updates on adjacent pairs we can therefore build
a sequence of propositionwise updates of length k from B
into B′.

3.2 F -Consistent Termination
We now give a formal definition that we will use to char-
acterise integrity constraints on which the outcome of the
propositionwise diffusion process matches the outcome of
the rule F , if this outcome satisfies integrity constraint.

Definition 3. An opinion diffusion process is said to be
F -consistent on a network G if for all termination profiles
B it is the case that for any i ∈ N : if F (BInf(i)) ∈ IC, then
Bi = F (BInf(i)).

Clearly F -POD is F -consistent. We show that the same
holds for F -PWOD if and only if IC has an open structure.

Proposition 2. F -PWOD is F -consistent if and only if
IC has an open structure.

Proof. For the right to left direction, we first assume
that IC has an open structure. Suppose further F -PWOD
terminates on a profile B and F (BInf(i)) ∈ IC, and suppose
for contradiction that F -PWOD is not F -consistent. That
is, there is some agent i ∈ N such that B′i 6= Fi(BInf(i)).
If Fi(BInf(i)) ∈ IC, then since IC has an open structure,
there must be some p ∈ I s.t. Fi(BInf(i))(p) 6= Bi(p) and
flip(Bi, p) ∈ IC. By Definition 1, this implies the existence
of a permissible and effective transformation from B to a
second profile B′ by having i updating on p, against the
assumption that B is a termination profile.

For the left to right direction, suppose that IC does not
have an open structure. Then it must be the case that there
are two opinions B,B′ such that H(B,B′) = k and all paths
of opinions in IC connecting them has length at least k + 1.
By the pigeonhole principle, this implies the existence of
two distinct opinions B′′ and B′′′, possibly equal to B and
B′, such that there is no p ∈ I where B′′(p) 6= B′′′(p) and
flip(B′′, p) ∈ IC. Let now N = {1, 2}, E = {(1, 2)}, and
B = (B′′′, B′′). Observe that B is a termination profile,
since F (BInf(2)) = B′′′ and by construction there is no p such
that B′′(p) 6= B′′′(p) and flip(B′′, p) ∈ IC. But B′′ 6= B′′′

and therefore F -PWOD is not F -consistent.

Proposition 2 shows that if aggregating an agent’s influ-
encers using F gives an opinion in the set IC, F -PWOD will
eventually reach a state where each agent’s opinion is equiv-
alent to the outcome of F . We can in fact make a stronger
claim if we know an agent’s sources have stable opinions:

Proposition 3. Let i ∈ N and B be a profile on G. If
all j ∈ Inf(i) have stable opinions in B and IC has an open
structure, then for any F -PWOD termination profile B′′

and F -POD termination profile B′, both resulting from B,
we have that H(B′′i , F (B′′

Inf(i))) ≤ H(B′i, F (B′
Inf(i))).

2This result is folklore, a formal proof can be found in [9].

Proof. If all agents in Inf(i) have stable opinions on
G, then F (B′′

Inf(i)) = F (B′
Inf(i)) = F (BInf(i)). Suppose

F (BInf(i)) ∈ IC. By Proposition 2, F -PWOD ensures that
at termination B′′i = F (BInf(i)), and the same will hold for
F -POD. Suppose F (BInf(i)) 6∈ IC. Then B′i = Bi. If
F -PWOD is not able to perform any updates, B′′i = Bi as
well, but if even one update is performed, H(F (B′′

Inf(i)), B
′′
i ) <

H(F (B′
Inf(i)), B

′
i).

Although the assumption of IC having an open structure
guarantees that F -PWOD will be able to make at least as
many updates as F -POD when faced with an outcome which
does not satisfy the constraint, this might in some cases
simply mean that neither F -PWOD nor F -POD will be
able to update. In the worst case, this means that an agent
will end up with an opinion that is very distant from the
opinions of her influencers.

Proposition 4. For any number of issues m, there is al-
ways some IC with open structure such that we can construct
a network G and a F -PWOD termination profile B where
an agent i is at distance m− 2 from F (BInf(i)).

Proof. Let I = {p1, . . . , pm} and IC = (¬p1 ∧ ¬pm) →
(p2∧, . . . ,∧pm−1), i.e. IC allows all opinions except those
which reject the first and last issue and at least one other
issue.We slightly abuse our notation and say that B0 is the
opinion which rejects all issues, Bk only accepts the kth
issue, and B∗ rejects the first and last issue, but accepts all
others.

Let Fi be the strict majority rule. We first show that we
can construct a network and termination profile such that
there is an agent who is at distance m−2 from the outcome
of Fi over her influencers. Take the following network G and
profile B:

B1 B1 Bm Bm B∗

i : B∗

Here Fi(BInf(i)) = B0 6|= IC. However, for any issue on
which agent i does not agree with the majority, namely p2
to pm−1, she cannot update her opinion without ending up
in one of the opinions prohibited by IC.

We now show such an IC must have an open structure.
Let B,B′ |= IC. Suppose both B and B′ accept the first
(last) issue. Then since all opinions accepting the first (last)
issue satisfy IC, we can freely move between the two by
performing updates to single propositions. If both B and B′

reject both the first and the last issue, then B = B′ = B∗
as this is the only opinion which satisfies IC.

Thus, we only need to check if there is a required sequence
of opinions between B and B′ if they disagree on either the
first issue or the last. W.l.o.g., suppose they disagree on
the first issue and B rejects the first issue and B′ accepts
it. Then B can update on the first issue before performing
any other updates, as flip(B, p1) satisfies IC. Now since,
flip(B, p1) and B′ both accept the first issue, there must
be a sequence of opinions from flip(B, p1) to B′ where the
distance between any two successive opinions is 1 and each
satisfies IC. Further, since H(B,flip(B, p1)) = 1, we can
conclude that the constructed sequence has length exactly
H(B,B′) + 1.



Note that in the construction in Proposition 4, F -POD
would result in the same termination profile.

4. TERMINATION OF ITERATIVE
OPINION DIFFUSION

In this section we compare the two proposed diffusion models
with respect to the termination of the associated iterative
process. We first need to introduce a number of definitions.

Recall that by fixing a turn function and functions propi

for i ∈ N , deciding which agents are updating and on which
issues, we can define iterative processes associated to F -POD
and F -PWOD. The following definitions are straightfor-
ward adaptations of those proposed by Brill et al. [3]. We
call an iterative process asynchronous if |turn(t)| = 1 for all
t ∈ N, and synchronous if turn(t) = N for all t ∈ N. We
say that the iterative process F -POD or F -PWOD univer-
sally terminate on a class of graphs E if for all G ∈ E and
each initial opinion profile B there does not exists an infinite
sequence of effective transformations starting from B. We
say that F -POD or F -PWOD asymptotically terminate on
a class of graphs E if for all E ∈ E and profiles B the fol-
lowing condition holds: from all profiles B′ reachable from
B there exists a path of permissible transformations lead-
ing to a termination profile. When both the turn and propi

functions select an agent and an issue uniformly at random,
asymptotic termination implies that the probability of even-
tually reaching a termination state tends to 1 as t goes to
infinity. Finally, a consensual termination profile is a profile
B such that for all i, j ∈ N we have that Bi = Bj .

Aggregation functions Fi are typically classified by means
of axiomatic properties. A full-blown analysis of the influ-
ence of these properties on termination is out of the scope
of this paper, but we still need one such definition. We say
that an aggregator Fi is unanimous for agent i if, when-
ever Bj = B∗ for all j 6= i then Fi(B) = B∗. In words,
whenever all influencers (excluding the updating agent) are
unanimous, F updates according to the influencers.

4.1 Simple cycles
A simple cycle is a finite network E such that every agent has
exactly one outgoing edge and exactly one incoming edge.

Proposition 5. If G is a simple cycle and Fi are unani-
mous, then asynchronous F -POD terminates asymptotically
to a consensual termination profile.

Proof. Let B0 be a profile on the simple cycle G, where
E = {(1, 2), . . . , (i, i+1) . . . , (n, 1)}. Let i∗ ∈ N be such that
B0

i∗ 6= B0
i∗+1. If such an agent does not exists then the pro-

file B is already a consensual termination profile. Let us now
define the following turn function. Let turn(t) = i∗ + t + 1,
for t = 0, . . . , n−1. Since B0

i∗ satisfy the integrity constraint
by assumption, and all Fi are unanimous aggregators, then
at each iteration step t agent i∗+ t+ 1 will copy the opinion
of agent i∗+ t, obtaining a consensual termination profile at
t = n−1 in which all agents have the same opinion B0

i∗ .

The same result holds for F -PWOD, albeit under addi-
tional assumptions on the integrity constraint:

Proposition 6. If G is a simple cycle, F is unanimous,
and IC has an open structure, then asynchronous F -PWOD
terminates asymptotically to a consensual termination pro-
file. The same holds for synchronous F -PWOD if |I| ≥ 2.

Proof sketch. Let B0 be a profile on G, and let i∗ ∈ N
be such that B0

i∗ 6= B0
i∗+1. Since IC has an open structure,

there is a sequence of propositionwise updates of length k =
H(B0

i∗ , B
0
i∗+1) that transforms the latter opinion into the

former. By defining turn(t) = i∗ + 1 for t = 0, . . . , k, and
propi according to the sequence above, we obtain a resulting
profile Bk such that Bk

i∗+1 = B0
i∗ and Bk

j = B0
j for all

j 6= i∗ + 1. The process can then be repeated for i∗ + 2,
and sequentially until reaching again agent i∗, to obtain a
consensual termination profile in which all agents have the
same opinion B0

i∗ .
The proof for synchronous F -PWOD uses the same con-

struction as above, setting the propi functions to update on
irrelevant issues for the non updating agents.

Observe that the set of termination profiles that can be
reached starting from the same profile of initial opinions can
be different depending on whether we are using F -POD or
F -PWOD. In particular, while the former leads to profiles
that are consensual on opinions that are already present in
the initial profile, the second can result in consensual profiles
on opinions that are a combination of the initial ones.

4.2 Directed acyclic graphs
A directed acyclic graph (DAG) is a directed graph that
contains no cycle involving two or more vertices. A simple
argument of propagation allows us to prove the following:

Proposition 7. If G is a DAG, then both synchronous
and asynchronous F -POD and F -PWOD converge univer-
sally.

Proof sketch.. We define potential functions hi for each
node i, as follows: hi(t) = H(Bt

i , Fi(BInf(i)), measuring the
distance between an individual’s opinion and the aggregated
opinion of its influencers. Each effective transformation un-
der both F -POD and F -PWOD decreases one such func-
tion, the one of the updating agent, and possibly increases
others, those of the agents influenced by the one updating.
By ordering such potential functions based on the distance
from a node to a source, which is possible given the assump-
tion that G is a DAG, we obtain a lexicographic ordering
of all functions hi that decreases strictly with each effective
transformation. Therefore, for any set of aggregators Fi

and any DAG it is impossible to build an infinite sequence
of F -POD or F -PWOD effective transformations.

4.3 Complete graphs
Let a complete graph be such that E = N ×N . Observe in
particular that this means i ∈ Inf(i) for each i ∈ N . Using
an idea from Farnoud et al. [11], we are able to show the
following:

Proposition 8. If G is the complete graph, then both
synchronous and asynchronous F -POD and F -PWOD con-
verge universally.

Proof. On a complete graph the set of influencers Inf(i) =
N for all i. Let therefore h(t) =

∑
i H(Bi, F (B)) be a po-

tential function that measures the overall distance of the
individual opinions from the overall aggregated one. Every
effective transformation for both F -POD and F -PWOD de-
creases the value of h, hence obtaining the desired result.

A general result on the asymptotic convergence of F -POD
or F -PWOD is an open problem. A proof similar to the



one used by [3] could be adapted to show that F -PWOD
asymptotically converges on any graph, provided that at
any point in time the aggregated opinion of any set of in-
fluencers satisfy the integrity constraint. This assumption
seems however too restrictive for diffusion processes that are
designed to deal with integrity constraints. Universal con-
vergence cannot be guaranteed even on simple cycles, for
both F -POD and F -PWOD, at least when more than two
issues are present. To see this it is sufficient to consider a
simple cycle with only one agent having opinion 11 and all
others 00, and devise turn and propi functions that make
the 11 opinion turn in the cycle whilst keeping all other
opinions at 00.

4.4 Update Order Dependence
When updating on single propositions at a time, even with
all agents updating synchronously, the order in which each
agent updates their opinions matters in determining what
the possible termination profiles look like. Consider for in-
stance the following example:

Example 3. Let a network and a profile of opinions be
as in the figure below and let IC = D \ {(111)}.

A : 101 B : 011

D : 000 E : 000

C : 110

Two agents with the same initial opinion can have the same
set of influencers yet end up with different opinions in a
termination profile, depending on the order in which they
update their opinions on the issues. We can see this with
agents D and E who have the same initial opinion. In our
case if D updates the issues in the order p, q, r, obtaining
110, and E in the order r, q, p, obtaining 011, these will be
their opinions in the termination profile.

Similar situations occur when an integrity constraint blocks
the update on a certain set of issues, even though the result
of the majority rule is consistent. This does not happen with
IC with open structure, as can be shown in the following
proposition. Recall from Section 2 that by fixing a function
propi for each individual i we obtain an iterative diffusion
process. We say that the propi functions are balanced if all
profiles at which the iterative process stabilizes, i.e., when
there is a T such that Bt = BT for all t ≥ T , then BT is
a termination profile.

Proposition 9. If IC has an open structure, that IC is
guaranteed to be satisfied by the outcome of F , and that no
ties will occur at any iteration step, then on any directed
acyclic graph any choice of balanced propi functions results
in the same termination profile as F -POD.

Proof sketch. By Proposition 2, if IC has an open struc-
ture and the outcome of F is guaranteed to satisfy the
integrity constraint, then the process will converge to the
result of aggregating the influencers’ opinions via F . By
Proposition 7 we know that the iterative process on DAGs
converge, and by a simple algorithm of propagation from
the sources we can also show that the iterative F -PWOD
process stabilises on a termination profile that is uniquely
determined by the initial profile B0.

Proposition 9 does not generalize to arbitrary network
containing cycles. Consider the following example:

Example 4. Let G be as depicted in the figure below, and
let there be no integrity constraint, i.e., IC = D.

A : 11 B : 00

Suppose in the first round of updates, agent A updates on
the first issue, and B on the second issue. In the second
round, A updates on the second issue, and B on the first
issue. PWOD will then terminate on the unanimous profile
(01), (01). However if the agents switch the order of updates
(A updates the second issue first, then the first issue, simi-
larly for B), we arrive at the profile (10), (10).

5. STRATEGIC MANIPULATION
In this section we examine the possibility of a strategic agent
guiding the outcome of a diffusion process by misreporting
her initial opinion. We limit our attention to the source
agents when considering possible cases of manipulation, as
these are the only agents in the network who are in a sense,
sure about their opinion and will only change it for strategic
reasons.

We assume agents’ preferences are defined by means of the
Hamming distance wrt. their initial opinion (this is one of
many possible choices, see, e.g., [6]). Each agent i with ini-
tial opinion Bi is associated with a weak ordering �i defined
as follows: B �i B′ if and only if H(B,Bi) ≤ H(B′, Bi),
i.e., when the Hamming distance between her truthful opin-
ion and B is less than or equal to the distance between her
truthful opinion and the opinion B′. In what follows we pro-
vide two examples in which a source agent is able to guide
the influence process to obtain a resulting opinion profile
where agents influenced by her have opinions closer to hers
if compared to the outcome of the diffusion process had she
been honest about her opinion.

We begin by showing how F -POD can manipulated in
presence of an integrity constraint.

Example 5. Let there be four agents, and let D \ IC =
{111}, i.e. let (111) be the only forbidden opinion. Let the
network and the profile be defined as below:

A : 011 B : 101 C : 110

D : 100

Suppose FD is the strict majority rule, resulting in an ag-
gregated result of (111), and no update for agent D. Then
agent A will benefit by reporting (010) instead of her truth-
ful opinion above: in the truthful profile D does not update,
keeping her opinion which is at distance 3 from A’s opinion,
while in the second profile D updates to (110), which is at
distance 2 from A’s truthful opinion (011).

The situation is similar for F -PWOD, except that a po-
tential manipulator needs to know the order of updates on
the issues in advance to be sure of the effect of her manipu-
lation.

Example 6. Let IC = {111, 100, 010, 001, 011, 000}. Let
the network and the profile be defined as follows:



A : 111 B : 011 C : 100

D : 000

If agent D updates first her opinion on p1 then p2 then p3,
then her opinion at termination will be (100). If agent A
knows this is the order in which D will perform the updates,
it is in her interest to report the opinion (011) instead of her
truthful opinion (111), as this results in the opinion (011)
for agent D at termination. Note however that if agent D
updates in a different order, say first p3 then p2 then p3,
then D’s opinion at termination is (111) and it is in agent
A’s interest to keep her initial opinion.

6. TRANSFORMATION FUNCTIONS
A transformation function is one way of representing opin-
ion change among a group of agents. Following the defini-
tion of List [26], such a function takes as input a profile of
opinions B and outputs a second profile B′, representing
the influenced or updated opinions. One example of such a
transformation function T is deference to unanimity, where
Ti(B) – the transformed opinion of agent i – accepts only
those issues unanimously accepted by all agents in B. In
this section, we adapt this definition to take into account the
network relating the individuals, and we adapt the axioms
initially proposed by List [26], and subsequently formalized
by Grossi and Pigozzi [19], to this setting.

6.1 Opinion Transformation on a Network
Given a social influence network and a profile corresponding
to the opinions of the agents in the network, a network-based
opinion transformation function returns a profile which com-
prises the updated opinions of each agent in the network.
Formally (recall that D is the set of all individual opinions):

T : DN × 2(N×N ) → DN .

The propositionwise opinion diffusion mechanisms defined
in Section 2 can be viewed as network-based opinion trans-
formation functions. Given a set of issues I, agents N ,
an integrity constraints IC ⊆ D, and an influence network
G = (N , E), for any p ∈ I we can define a transformation
function T where:

Ti(B, G) = F -PWOD(G,B, i, p).

With p corresponding to propi(t), at any time t of the iter-
ative diffusion process.

6.2 Axioms for Opinion Transformations
In this section we adapt some of the axioms proposed by List
[26] to the current setting, and we propose novel network-
specific properties. We begin with the following straight-
forward adaptation of some classical axioms. Note that by
Ti,p(B, G) we mean the opinion of agent i on p in the trans-
formed profile.

Rationality: for all networks G ∈ G, agents i ∈ N , profiles
B ∈ ICN we have that Ti(B, G) ∈ IC.3

Unanimity: for all networks G ∈ G and opinions B∗ ∈ D,
if it is the case that Bi = B∗ for all agents i ∈ N , then
Ti(B, G) = B∗ for all i ∈ N .

3Observe that IC is a parameter of this axiom.

Responsiveness: for all networks G ∈ G and agents i ∈
N , there exist two profiles B,B′ ∈ DN such that
B =−i B

′, Bi 6= B′i and Ti(B, G) 6= Ti(B
′, G).

Independence: for all networks G ∈ G, issues p ∈ I,
and pairs of profiles B,B′ ∈ DN , if it is the case
that Bi(p) = B′i(p) for all i ∈ N then Ti,p(B, G) =
Ti,p(B′, G) for all i ∈ N .

Monotonicity: for all networks G ∈ G, issues p ∈ I,
and pairs of profiles B,B′ ∈ DN , if for i, j ∈ N ,
B =−j B′, Bj =−p B′j , B(p) = 0 and B′(p) = 1,
then Ti(B, G)(p) = 1⇒ Ti(B

′, G)(p) = 1.

Rationality states that if the input to the transformation
function is a profile of rational opinions, then the outcome of
the transformation should be a profile of rational opinions.
Unanimity states that if every opinion in the input profile
is the same, then the function simply outputs this same
profile. A transformation function is Responsive if there
are two profiles in which only agent i changes her opinion,
and her opinion in the outcome is different for the two pro-
files. Independence states that the opinion an agent has on a
proposition p in the outcome of the transformation function
depends only on agents’ opinions on p in the input profile.
Monotonicity requires that for any agent i, if they accepted
a proposition p in the outcome of a transformation function
T applied to a profile B, then added support to this propo-
sition in a profile B′ should imply that p remains accepted
by agent i in the outcome of T .

Several of the axioms for transformation function have
counterparts in judgment aggregation. For example, the
Monotonicity Axiom for network-based transformation func-
tions simply states that the aggregation function each agent
uses must satisfy Monotonicity as defined for aggregation
functions.

We now give three axioms that are specifically defined for
transformations on a social network.

Influencer-Unanimity: for all networks G ∈ G, opinions
B∗ ∈ D, and agents i ∈ N , if for all agents j 6= i ∈
Inf(i) we have that Bj = B∗ then Ti(B, G) = B∗.

Influencer-Independence: for all networks G ∈ G, issues
p ∈ I, agents i ∈ N , and profiles B,B′ ∈ DN , if it
is the case that Bj(p) = B′j(p) for all j ∈ Inf(i) then
Ti,p(B, G) = Ti,p(B′, G).

Exclusiveness: for all networks G ∈ G, agents i ∈ N , and
profiles B,B′ ∈ DN , if [∀j ∈ Inf(i) ∪ {i} : Bj = B′j ],
then [Ti(B, G) = Ti(B

′, G)].

Influencer-Unanimity states that if all influencers of an
agent submit the same opinion in the input to the transfor-
mation function, then the agent submits that same opinion
in the output profile. Influencer-Independence states that a
transformation function is Independent with respect to the
opinions of an agent’s influencers. For the complete network
where Inf(i) = N for all agents i, Influencer-Independence
corresponds to Independence. Finally, a transformation func-
tion is Exclusive if an agent’s opinion in the output of the
transformation function depends only on her own opinion
and the opinions of her influencers in the input profile. This
means that someone who is not an influencer of an agent
cannot play any role in the opinion update of this agent at
any step in the diffusion.



6.3 Majority PWOD
The aggregation rule FMaj, which accepts only the issues
accepted by a (strict) majority of agents, is the strict ma-
jority rule, and is defined such that for any proposition
p, FMaj(B)(p) = 1 if and only if

∣∣NB
p

∣∣ > n
2

, where NB
p

is the set of agents who accept p in the profile B.4 Let
Maj-PWOD be the propositionwise opinion diffusion model
in which each agent uses the strict majority rule to update,
i.e., where Fi = FMaj for all i ∈ N . By definition, F -POD
and F -PWOD for any F satisfy Rationality and Exclusive-
ness. The same holds for Responsiveness as agents must
always take into account their own opinion to ensure that
changes can be made on a subset of I while still satisfying
the constraint. Though the majority judgment aggregation
rule satisfies Independence and Unanimity, the proposition-
wise updates lead to a violation of the corresponding axioms
for transformation functions.

Proposition 10. The Maj-PWOD transformation func-
tion is rational, unanimous, responsive and monotonic. It
does not satisfy independence, influencer-independence, or
influencer-unanimity.

Proof. As noted above, Maj-PWOD satisfies Rational-
ity and Exclusiveness by definition. Moreover, it is straight-
forward to observe that Unanimity is also satisfied, as if
every agent submits the same ballot B, then any agent i
will agree with her influencers on any proposition p and will
never change her opinion.

For Monotonicity, suppose for profiles B and B′ that for
i, j ∈ N , B =−j B′, Bj =−p B′j , Bj(p) = 0 and B′j(p) = 1,
and further, that Ti,p(B, G) = 1. If j 6= i and j 6∈ Inf(i) we
know Ti,p(B′, G) = Ti,p(B, G) because Maj-PWOD is Ex-
clusive. If j ∈ Inf(i), then Ti,p(B, G) = 1 means there was
a majority of acceptances for p among agent i’s influencers,
or there was a majority of rejections but a change in opinion
was blocked by IC. If it is the former, we know that an addi-
tional acceptance for p in B′ means it remains the case that
Ti,p(B′, G) = 1. If it is the latter, then it must have been
the case that Bi(p) = 1 and thus B′i(p) = Ti,p(B′, G) = 1.
Now suppose i = j. If j ∈ Inf(i), then the only way
Ti,p(B′, G) = 0 is if there is a majority of rejections for p
among agent i’s influencers, but since no agent but i changes
her opinion, this cannot be the case. If i 6∈ Inf(i) we fall back
into the first case we analysed.

We provide a counterexample to show that Influencer-
Unanimity fails. Let there be two issues I = {p, q} and
suppose IC = p → q. Let G be the following network and
B the profile shown in the network below:

i: 00

a:11 b:11 c:11

Let p be the issue agent i is updating. Then Ti(B, G) = Bi

as an update to p would lead to an opinion which does not
satisfy the constraint, falsifying Influencer-Unanimity.

Take now a second profile B′ that coincides with the
one described above, with the exception that B′i = (01),

4Here we take n to be the number of opinions in the input
to the aggregation rule and not the total number of agents
in the network.

hence such that B =−i B′. We have that Ti,p(B, G) = 0,
since the update is blocked by the integrity constraint, while
Ti,p(B′, G) = 1, falsifying Independence.

Influencer-Independence also fails, as can be seen in the
following example. Take two profiles B,B′ ∈ DN , and let
Bj(p) = B′j(p) = 1 for all j ∈ Inf(i) for some agent i. Sup-
pose i 6∈ Inf(i) and let Bi = (10), B′i = (01). Further,
let IC = {(01), (10)}. Then, even if FMaj(BInf(i))(p) =
FMaj(B

′
Inf(i))(p) = 1, we still have that Ti(B, G) = (10)

while Ti(B
′, G) = (01), contradicting the axiom of Influencer-

Independence.

7. CONCLUSIONS AND FUTURE WORK
In this paper we have introduced and studied two models for
opinion diffusion on multiple binary issues connected by an
integrity constraint. Propositional opinion diffusion F -POD
updates on all issues at the same time, provided that the
aggregated opinion of one’s influencers satisfy the integrity
constraint. Propositionwise opinion diffusion F -PWOD, in-
stead, updates on one issue at the time towards the aggre-
gated opinion of the influencers, provided that this single
change satisfies the integrity constraint. We have charac-
terised the set of integrity constraints on which F -PWOD
coincides with F -POD at termination of the diffusion pro-
cess, and compared the two processes on the distance be-
tween an agent’s opinion and the one of her influencers.
We have given sufficient conditions for the termination of
the iterated diffusion process, and provided initial results on
the strategic abilities of source agents in the network. We
also adapted axiomatic conditions for profile transformation
functions, previously defined in judgment aggregation, to
take into account a social network relating the individuals,
and used these novel formulations to analyze the majoritar-
ian propositionwise opinion diffusion method.

This paper poses a number of open questions, and sug-
gests fascinating directions for future research. First, obtain-
ing termination results for arbitrary integrity constraints, or
characterising the set of constraints that guarantee termina-
tion on arbitrary networks, would be a major advancement.
Techniques from finite Markov chains may be useful in such
proofs (see, e.g., [21]). Second, the interplay between the
properties of the aggregators, the structure of the integrity
constraints, and the network, need to be investigated fur-
ther. Third, issues of succinctness and computational com-
plexity should be tackled. Once the integrity constraint
is represented as a logical formula, a number of strategic
questions related to influence maximisation may become in-
tractable.
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