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ABSTRACT
We present three results on the complexity of Minimax
Approval Voting. First, we study Minimax Approval
Voting parameterized by the Hamming distance d from
the solution to the votes. We show Minimax Approval
Voting admits no algorithm running in time O?(2o(d log d)),
unless the Exponential Time Hypothesis (ETH) fails. This
means that the O?(d2d) algorithm of Misra et al. [AAMAS
2015] is essentially optimal. Motivated by this, we then
show a parameterized approximation scheme, running in time
O?((3/ε)2d), which is essentially tight assuming ETH. Finally,
we get a new polynomial-time randomized approximation
scheme for Minimax Approval Voting, which runs in time

nO(1/ε2·log(1/ε)) · poly(m), where n is a number of voters and
m is a number of alternatives. It almost matches the running
time of the fastest known PTAS for Closest String due to
Ma and Sun [SIAM J. Comp. 2009].

CCS Concepts
•Theory of computation→ Rounding techniques; Fixed
parameter tractability; Problems, reductions and com-
pleteness; Linear programming; •Computing methodolo-
gies → Multi-agent systems;

Keywords
minimax approval voting, computational social choice, lower
bound, parameterized complexity, ptas

1. INTRODUCTION
One of the central problems in artificial intelligence and

computational social choice is aggregating preferences of
individual agents (see the overview of Conitzer [8]). Here we
focus on multi-winner choice, where the goal is to select a
k-element subset of a set of candidates. Given preferences of
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the agents over the candidates, a multi-winner voting rule
can be used to select a subset of candidates that in some
sense are preferred by the agents. This scenario covers a
variety of settings: nations elect members of parliament or
societies elect committees [7], web search engines choose
pages to display in response to a query [11], airlines select
movies available on board [31, 12], companies select a group
of products to promote [25], etc.

In this work we restrict our attention to approval-based
multi-winner rules, i.e., rules where each voter expresses his
or her preferences by providing a subset of the candidates
which he or she approves. Various voting rules are studied
in the literature. In the simplest one, Approval Voting (AV),
occurrences of each candidate are counted and k most often
approved candidates are selected. While this rule has many
desirable properties in the single winner case [13], in the
multi-winner scenario its merits are often considered less
clear [18], e.g., because it fails to reflect the diversity of inter-
ests in the electorate [17]. Therefore, numerous alternative
rules have been proposed, including Satisfaction Approval
Voting, Proportional Approval Voting, and Reweighted Ap-
proval Voting (see [17] for details). In this paper we study
a rule called Minimax Approval Voting (MAV), introduced
by Brams et al. [3]. Here, we see the votes and the choice as
0-1 strings of length m (characteristic vectors of the subsets,
i.e., the candidate i is approved if the string contains 1 at
position i). For two strings x and y of the same length the
Hamming distance H(x, y) is the number of positions where
x and y differ, e.g., H(011, 101) = 2. In MAV, we look for a
0-1 string with k ones that minimizes the maximum Ham-
ming distance to a vote. In other words, MAV minimizes
the disagreement with the least satisfied voter and thus it
is highly egalitarian: no voter is ignored and a majority of
voters cannot guarantee a specific outcome [3, 19].

Our focus is on the computational complexity of comput-
ing the choice based on the MAV rule. In the Minimax
Approval Voting decision problem, we are given a multiset
S = {s1, . . . , sn} of 0-1 strings of length m (also called votes),
and two integers k and d. The question is whether there
exists a string s ∈ {0, 1}m with exactly k ones such that for
every i = 1, . . . , n we have H(s, si) ≤ d. In the optimization
version of Minimax Approval Voting we minimize d, i.e.,
given a multiset S and an integer k as before, the goal is to



find a string s ∈ {0, 1}m with exactly k ones which minimizes
maxi=1,...,nH(s, si).

A reader familiar with string problems might recognize
that Minimax Approval Voting is tightly connected with
the classical NP-complete problem called Closest String,
where we are given n strings over an alphabet Σ and the goal
is to find a string that minimizes the maximum Hamming
distance to the given strings. Indeed, LeGrand et al. [20]
showed that Minimax Approval Voting is NP-complete as
well by reduction from Closest String with binary alpha-
bet. First proof of NP-completeness of Minimax Approval
Voting was shown using reduction from Vertex Cover [19].
This motivated the study on Minimax Approval Voting
in terms of approximability and fixed-parameter tractability.

Previous results on Minimax Approval Voting .
First approximation result was a simple 3-approximation

algorithm due to LeGrand et al. [20], obtained by choosing
an arbitrary vote and taking any k approved candidates
from the vote (extending it arbitrarily to k candidates if
needed). Next, a 2-approximation was shown by Caragiannis
et al. [6] using an LP-rounding procedure. Finally, Byrka et
al. [5] presented a polynomial time approximation scheme
(PTAS), i.e., an algorithm that for any fixed ε > 0 gives
a (1 + ε)-approximate solution in polynomial time. More

precisely, their algorithm runs in time mO(1/ε4) + nO(1/ε3)

which is polynomial in the number of voters n and the number
of alternatives m. The PTAS uses information extraction
techniques from fixed size (O(1/ε)) subsets of voters and
random rounding of the optimal solution of a linear program.

In the area of fixed parameter tractability (FPT) every
instance I of a problem P contains additionally an integer
r, called a parameter. The goal is to find a fixed parameter
algorithm (also called FPT algorithm), i.e., an algorithm
with running time of the form f(r)poly(|I|), where f is
a function, which is typically at least exponential for NP-
complete problems. If such an algorithm exists, we say
that the problem P parameterized by r is fixed parameter
tractable (FPT). For more details about FPT algorithms see
the textbook of Cygan et al. [9] or the survey Bredereck et
al. [4] (in the context of computational social choice). The
study of FPT algorithms for Minimax Approval Voting
was initiated by Misra et al. [28]. They show for example
that Minimax Approval Voting parameterized by k (the
number of ones in the solution) is W [2]-hard, which implies
that there is no FPT algorithm, unless there is a highly
unexpected collapse in parameterized complexity classes.
From a positive perspective, they show that the problem is
FPT when parameterized by the maximum allowed distance
d or by the number of votes n. Their algorithm runs in time1

O?(d2d).2 For a study on FPT complexity of generalizations
of Minimax Approval Voting see Baumeister et al. [2].

1The O? notation suppresses factors polynomial in the input
size.
2Actually, in the article [28] the authors claim the slightly
better running time of O?(dd). However, there is a flaw in
the analysis [22, 27]: it states that the initial solution v is
at distance at most d from the solution, while it can be at
distance 2d because of what we call here the k-completion op-
eration. This increases the maximum depth of the recursion
to d (instead of the claimed d/2).

Previous results on Closest String .
It is interesting to compare the known results on Minimax

Approval Voting with the corresponding ones on the better
researched Closest String. The first PTAS for Closest
String was given by Li et al. [21] with running time bounded

by nO(1/ε4) where n is the number of the input strings. This

was later improved by Andoni et al. [1] to n
O(

log 1/ε

ε2
)
, and

then by Ma et al. [26] to nO(1/ε2).
The first FPT algorithm for Closest String, running

in time O?(dd) was given by Gramm et al. [14]. This was
later improved by Ma et al. [26], who gave an algorithm

with running time O?(2O(d) · |Σ|d), which is more efficient for
constant-size alphabets. Further substantial progress is un-
likely, since Lokshtanov et al. [24] have shown that Closest

String admits no algorithms running in time O?(2o(d log d))

or O?(2o(d log |Σ|)), unless the Exponential Time Hypothesis
(ETH) [15] fails.

The discrepancy between the state of the art for Closest
String and Minimax Approval Voting raises interesting
questions. First, does the additional constraint on the num-
ber of ones in Minimax Approval Voting really make the
problem harder and the PTAS has to be significantly slower?
Similarly, although in Minimax Approval Voting the al-
phabet is binary, no O?(2O(d))-time algorithm is known, in
contrast to Closest String. Can we find such an algorithm?
The goal of this work is to answer these questions.

Our results.
We present three results on the complexity of Minimax

Approval Voting. Let us recall that the Exponential Time
Hypothesis (ETH) of Impagliazzo et al. [15] states that there
exists a constant c > 0, such that there is no algorithm
solving 3-SAT in time O?(2cn). In recent years, ETH be-
came the central conjecture used for proving tight bounds
on the complexity of various problems, see Lokshtanov et
al. [23] for a survey. Nevertheless, ETH-based lower bounds
seem largely unexplored in the area of computational so-
cial choice [30]. We begin with showing that, unless the
ETH fails, there is no algorithm for Minimax Approval
Voting running in time O?(2o(d log d)). In other words, the
algorithm of Misra et.al [28] is essentially optimal, and in-
deed, in this sense Minimax Approval Voting is harder
than Closest String. Motivated by this, we then show
a parameterized approximation scheme, i.e., a randomized
Monte-Carlo algorithm which, given an instance (S, k, d) and
a number ε > 0, finds a solution at distance at most (1 + ε)d

in time O?((3/ε)2d) or reports that there is no solution at
distance at most d (with arbitrarily small positive constant
probability of error). Note that our lower bound implies that,
under (randomized version of) ETH, this is essentially opti-
mal, i.e., there is no parameterized approximation scheme
running in time O?(2o(d log(1/ε))). Indeed, if such an algo-
rithm existed, by picking ε = 1/(d + 1) we would get an
exact algorithm which contradicts our lower bound. Finally,
we get a new polynomial-time randomized approximation
scheme for Minimax Approval Voting, which runs in time

nO(1/ε2·log(1/ε)) ·poly(m) (with arbitrarily small positive con-
stant probability of error). Thus the running time almost
matches the one of the fastest known PTAS for Closest
String (up to a log(1/ε) factor in the exponent).



Organization of the paper.
In Section 2 we introduce some notation and we recall

standard probability bounds that are used later in the pa-
per. In Section 3 we present our lower bound for Minimax
Approval Voting parameterized by d. Next, in Section 4
we show a parameterized approximation scheme. Finally,
in Section 5 we show a new randomized PTAS. The paper
concludes with Section 6, where we discuss directions for
future work.

2. DEFINITIONS AND PRELIMINARIES
For every integer n we denote [n] = {1, 2, . . . , n}. For a

set of words S ⊆ {0, 1}m and a word x ∈ {0, 1}m we denote
H(x, S) = maxs∈SH(x, s). For a string s ∈ {0, 1}m, the
number of 1’s in s is denoted as n1(s) and it is also called the
Hamming weight of s; similarly n0(s) = m− n1(s) denotes
the number of zeroes. Moreover, the set of all strings of
length m with k ones is denoted by Sk,m, i.e., Sk,m = {s ∈
{0, 1}m : n1(s) = k}. s[j] means the j-th letter of a string s.
For a subset of positions P ⊆ [m] we define a subsequence
s|P by removing the letters at positions [m] \ P from s.

For a string s ∈ {0, 1}m, any string s′ ∈ Sk,m at distance
|n1(s)− k| from s is called a k-completion of s. Note that it
is easy to find such a k-completion s′: when n1(s) ≥ k we
obtain s′ by replacing arbitrary n1(s)− k ones in s by zeroes;
similarly when n1(s) < k we obtain s′ by replacing arbitrary
k − n1(s) zeroes in s by ones.

3. A LOWER BOUND
In this section we show a lower bound for Minimax Ap-

proval Voting parameterized by d. To this end, we use a re-
duction from a problem called k×k-Clique. In k×k-Clique
we are given a graph G over the vertex set V = [k] × [k],
i.e., V forms a grid (as a vertex set; the edge set of G is a
part of the input and it can be arbitrary) with k rows and k
columns, and the question is whether in G there is a clique
containing exactly one vertex in each row.

Lemma 3.1. Given an instance I = (G, k) of k×k-Clique
with k ≥ 2, one can construct an instance I ′ = (S, k, d) of
Minimax Approval Voting, such that I ′ is a yes-instance
iff I is a yes-instance, d = 3k − 3 and the set S contains
O(k

(
2k−2
k−2

)
) strings of length k2 + 2k− 2 each. The construc-

tion takes time polynomial in the size of the output.

Proof. Each string in the set S will be of size m =
k2 + 2k − 2. Let us split the set of positions [m] into k + 1
blocks, where the first k blocks contain exactly k positions
each, and the last (k + 1)-th block contains the remaining
2k − 2 positions. Our construction will enforce that if a
solution exists, it will have the following structure: there will
be a single 1 in each of the first k blocks and only zeroes
in the last block. Intuitively the position of the 1 in the
first block encodes the clique vertex of the first row of G,
the position of the 1 in the second block encodes the clique
vertex of the second row of G, etc.

We construct the set S as follows.

• (nonedge strings) For each pair of nonadjacent ver-
tices v, v′ ∈ V (G) of G belonging to different rows,
i.e., v = (a, b), v′ = (a′, b′), a 6= a′, we add to S a
string svv′ , where all the blocks except a-th and a′-th
are filled with zeroes, while the blocks a, a′ are filled

0 ... 0 1 ... 1 0 1 ... 1 0 ... 0 1 ... 1 0 1 ... 1 0...0
0 on b-th position 0 on b′-th position︸ ︷︷ ︸ ︸ ︷︷ ︸

a-th block a′-th block

Figure 1: Nonedge string.

0 ... 0 1 ... 1 0 ... 0 0 0 1 0 1 1 0 ... 0 1 0︸ ︷︷ ︸ ︸ ︷︷ ︸
i-th block ones at positions X, |X| = k − 2

Figure 2: Row string.

with ones, except the b-th position in block a and the
b′-th position in block a′ which are zeroes (see Fig. 1).
Formally, svv′ contains ones at positions {(a− 1)k+ j :
j ∈ [k], j 6= b} ∪ {(a′ − 1)k + j : j ∈ [k], j 6= b′}. Note
that the Hamming weight of svv′ equals 2k − 2.

• (row strings) For each row i ∈ [k] we create exactly(
2k−2
k−2

)
strings, i.e., for i ∈ [k] and for each set X of

exactly k − 2 positions in the (k + 1)-th block we add
to S a string si,X having ones at all positions of the
i-th block and at X, all the remaining positions are
filled with zeroes (see Fig. 2). Note that similarly as
for the nonedge strings the Hamming weight of each
row string equals 2k − 2, and to achieve this property
we use the (k + 1)-th block.

To finish the description of the created instance I ′ =
(S, k, d) we need to define the target distance d, which we set
as d = 3k − 3. Observe that as the Hamming weight of each
string s′ ∈ S equals 2k − 2, for s ∈ {0, 1}m with exactly k
ones we have H(s, s′) ≤ d if and only if the positions of ones
in s and s′ have a non-empty intersection.

Let us assume that there is a clique K in G of size k
containing exactly one vertex from each row. For i ∈ [k] let
ji ∈ [k] be the column number of the vertex of K from row i.
Define s as a string containing ones exactly at positions
{(i − 1)k + ji : i ∈ [k]}, i.e., the (k + 1)-th block contains
only zeroes and for i ∈ [k] the i-th block contains a single 1
at position ji. Obviously s contains exactly k ones, hence it
suffices to show that s has at least one common one with each
of the strings in S. This is clear for the row strings, as each
row string contains a block full of ones. For a nonedge string
svv′ , where v = (a, b) and v′ = (a′, b′) note that K does not
contain v and v′ at the same time. Consequently s has a
common one with svv′ in at least one of the blocks a, a′.

In the other direction, assume that s is a string of length m
with exactly k ones such that the Hamming distance be-
tween s and each of the strings in S is at most d, which by
construction implies that s has a common one with each of
the strings in S. First, we are going to prove that s con-
tains a 1 in each of the first k blocks (and consequently has
only zeroes in block k + 1). For the sake of contradiction
assume that this is not the case. Consider a block i ∈ [k]
containing only zeroes. Let X be any set of k − 2 positions
in block k + 1 holding only zeroes in s (such a set exists
as block k + 1 has 2k − 2 positions). But the row string
si,X has 2k − 2 ones at positions where s has zeroes, and
consequently H(s, si,X) = k+ (2k−2) = 3k−2 > d = 3k−3,
a contradiction.



As we know that s contains exactly one one in each of the
first k blocks let ji ∈ [k] be such a position of block i ∈ [k].
Create X ⊆ V (G) by taking the vertex from column ji for
each row i ∈ [k]. Clearly X is of size k and it contains exactly
one vertex from each row, hence it remains to prove that X
is a clique in G. Assume the contrary and let v, v′ ∈ X be
two distinct nonadjacent vertices of X, where v = (i, ji) and
v′ = (i′, ji′). Observe that the nonedge string svv′ contains
zeroes at the ji-th position of the i-th block and at the ji′ -th
position of the i′-th block. Since for i′′ ∈ [k], i′′ 6= i, i′′ 6= i′

block i′′ of svv′ contains only zeroes, we infer that the sets
of positions of ones of s and svv′ are disjoint leading to
H(s, svv′) = k + (2k − 2) = 3k − 2 > d, a contradiction.

As we have proved that I is a yes-instance of k×k-Clique
iff I ′ is a yes-instance of Minimax Approval Voting, the
lemma follows.

In order to derive an ETH-based lower bound we need the
following theorem of Lokshtanov et al. [24].

Theorem 3.2. (Lokshtanov et al. [24]) Assuming ETH,

there is no 2o(k log k)-time algorithm for k × k-Clique.

We are ready to prove the main result of this section.

Theorem 3.3. There is no 2o(d log d)poly(n,m)-time algo-
rithm for Minimax Approval Voting unless ETH fails.

Proof. Using Lemma 3.1, the input instance G of k × k-
Clique is transformed into an equivalent instance I ′ =
(S, k, d) of Minimax Approval Voting, where n = |S| =
O(k

(
2k−2
k−2

)
) = 2O(k), each string of S has length m = O(k2)

and d = Θ(k). Using a 2o(d log d)poly(n,m)-time algorithm
for Minimax Approval Voting we can solve k × k-Clique
in time 2o(k log k)2O(k) = 2o(k log k), which contradicts ETH
by Theorem 3.2.

4. PARAMETERIZED APPROXIMATION
SCHEME

In this section we show the following theorem.

Theorem 4.1. There exists a randomized algorithm which,
given an instance ({si}i=1,...,n, k, d) of Minimax Approval

Voting and any ε ∈ (0, 3), runs in time O
((

3
ε

)2d
mn
)

and

either

(i) reports a solution at distance at most (1 + ε)d from S,
or

(ii) reports that there is no solution at distance at most d
from S.

In the latter case, the answer is correct with probability at
least 1− p, for arbitrarily small fixed p > 0.

Let us proceed with the proof. In what follows we assume
p = 1/2, since then we can get the claim even if p < 1/2
by repeating the whole algorithm dlog2(1/p)e times. Indeed,
then the algorithm returns an incorrect answer only if each
of the dlog2(1/p)e repetitions returned an incorrect answer,

which happens with probability at most (1/2)log2(1/p) = p.
Assume we are given a yes-instance and let us fix a solution

s∗ ∈ Sk,m, i.e., a string at distance at most d from all
the input strings. Our approach is to begin with a string

Pseudocode 1: Parameterized approximation scheme
for Minimax Approval Voting.

1 if |n1(s1)− k| > d then return NO;
2 x0 ← any k-completion of s1;
3 for j ∈ {1, 2, . . . , d} do
4 if H(xj−1, S) ≤ (1 + ε)d then return xj−1;
5 otherwise there exists si s.t. H(xj−1, si) > (1 + ε)d;
6 Pj,0 ← {a ∈ [m] : 0 = xj−1[a] 6= si[a] = 1};
7 Pj,1 ← {a ∈ [m] : 1 = xj−1[a] 6= si[a] = 0};
8 if min(|Pj,0|, |Pj,1|) = 0 then return NO;
9 Get xj from xj−1 by swapping 0 and 1 on pair of random

positions from Pj,0 and Pj,1;

10 if H(xd, S) ≤ (1 + ε)d then return xd;
11 else return NO ;

x0 ∈ Sk,m not very far from s∗, and next perform a number of
steps. In the j-th step we either conclude that xj−1 is already
a (1 + ε)-approximate solution, or with some probability we
find another string xj which is closer to s∗.

First observe that if |n1(s1)− k| > d, then clearly there is
no solution and our algorithm reports NO. Hence in what
follows we assume

|n1(s1)− k| ≤ d. (1)

We set x0 to be any k-completion of s1. By (1) we get
H(x0, s1) ≤ d. Since H(s1, s

∗) ≤ d, by the triangle inequality
we get the following bound.

H(x0, s
∗) ≤ H(x0, s1) +H(s1, s

∗) ≤ 2d. (2)

Now we are ready to describe our algorithm precisely (see
also Pseudocode 1). We begin with x0 defined as above. We
are going to create a sequence of strings x0, x1, . . . satisfying
n1(xj) = k for every j. For j = 1, . . . , d we do the following.
If for every i = 1, . . . , n we have H(xj−1, si) ≤ (1 + ε)d
the algorithm terminates and returns xj−1. Otherwise, fix
any i = 1, . . . , n such that H(xj−1, si) > (1 + ε)d. Let
Pj,0 = {a ∈ [m] : 0 = xj−1[a] 6= si[a] = 1} and Pj,1 = {a ∈
[m] : 1 = xj−1[a] 6= si[a] = 0}. The algorithm samples a
position a0 ∈ Pj,0 and a position a1 ∈ Pj,1. In case Pj,0 = ∅ or
Pj,1 = ∅ we return NO because it means that H(si, Sk,m) =
H(si, xj−1) > d. Then, xj is obtained from xj−1 by swapping
the 0 at position a0 with the 1 at position a1. If the algorithm
finishes without finding a solution, it reports NO.

The following lemma is the key to get a lower bound on
the probability that the xj ’s get close to s∗.

Lemma 4.2. Let x be a string in Sk,m such that H(x, si) ≥
(1 + ε)d for some i = 1, . . . , n. Let s∗ ∈ Sk,m be any solution,
i.e., a string at distance at most d from all the strings si,
i = 1, . . . , n. Denote

P ∗0 = {a ∈ [m] : 0 = x[a] 6= si[a] = s∗[a] = 1} ,

P ∗1 = {a ∈ [m] : 1 = x[a] 6= si[a] = s∗[a] = 0} .

Then,

min (|P ∗0 | , |P ∗1 |) ≥
εd

2
.

Proof. Let P be the set of positions on which x and si
differ, i.e., P = {a ∈ [m] : x[a] 6= si[a]} (see Fig. 3). Note
that P ∗0 ∪ P ∗1 ⊆ P . Let Q = [m] \ P .

The intuition behind the proof is that if min(|P ∗0 |, |P ∗1 |)
is small, then s∗ differs too much from si, either because



P Q

P ∗0 P
∗
1

s∗ 0 11 0

si 1 0 0 1

x 0 1 0 1

Figure 3: Strings x, si and s∗ after permuting the positions.

s∗|P is similar to x|P (when |P ∗0 | ≈ |P ∗1 |) or because s∗|Q
has much more 1’s than si|Q (when |P ∗0 | differs much from
|P ∗1 |).

We begin with a couple of useful observations on the
number of ones in different parts of x, si and s∗. Since x
and si are the same on Q, we get

n1(x|Q) = n1(si|Q). (3)

Since n1(x) = n1(s∗), we get n1(x|P ) +n1(x|Q) = n1(s∗|P ) +
n1(s∗|Q), and further

n1(s∗|Q)− n1(x|Q) = n1(x|P )− n1(s∗|P ). (4)

Finally note that

n1(s∗|P ) = |P ∗0 |+ n1(x|P )− |P ∗1 |. (5)

We are going to derive a lower bound on H(si, s
∗). First,

H(si|P , s∗|P ) = |P | − (|P ∗0 |+ |P ∗1 |) =

= H(x, si)− (|P ∗0 |+ |P ∗1 |) ≥ (1 + ε)d− (|P ∗0 |+ |P ∗1 |).

On the other hand,

H(si|Q, s∗|Q) ≥ |n1(s∗|Q)− n1(si|Q)| =
(3)
= |n1(s∗|Q)− n1(x|Q)| =
(4)
= |n1(x|P )− n1(s∗|P )| =
(5)
= ||P ∗1 | − |P ∗0 || .

It follows that

d ≥ H(si, s
∗) = H(si|P , s∗|P ) +H(si|Q, s∗|Q) ≥

≥ (1 + ε)d− (|P ∗0 |+ |P ∗1 |) + ||P ∗1 | − |P ∗0 || =
= (1 + ε)d− 2 min(|P ∗0 |, |P ∗1 |).

Hence, min(|P ∗0 |, |P ∗1 |) ≥ εd
2

as required.

Corollary 4.3. Assume that there is a solution s∗ ∈
Sk,m and that the algorithm created a string xj, for some
j = 0, . . . , d. Then,

Pr[H(xj , s
∗) ≤ 2d− 2j] ≥

( ε
3

)2j

.

Proof. We use induction on j. For j = 0 the claim follows
from (2). Consider j > 0. By the induction hypothesis,

Pr[H(xj−1, s
∗) ≤ 2d− 2j + 2] ≥

( ε
3

)2j−2

. (6)

Assume that H(xj−1, s
∗) ≤ 2d−2j+2. Since xj was created,

H(xj−1, si) > (1+ε)d for some i = 1, . . . , n. SinceH(s∗, si) ≤
d, by the triangle inequality we get the following.

|Pj,0|+ |Pj,1| = H(xj−1, si) ≤
≤ H(xj−1, s

∗) +H(s∗, si) ≤ 3d− 2j + 2 ≤ 3d. (7)

Then, by Lemma 4.2

Pr[H(xj , s
∗) ≤ 2d− 2j | H(xj−1, s

∗) ≤ 2d− 2j + 2] ≥

≥ |P ∗0 | · |P ∗1 |
|Pj,0| · |Pj,1|

≥
(
εd
2

)2(
3d
2

)2 =
( ε

3

)2

. (8)

The claim follows by combining (6) and (8).

In order to increase the success probability, we repeat the
algorithm until a solution is found or the number of repe-
titions is at least (3/ε)2d. By Corollary 4.3 the probability
that there is a solution but it was not found is bounded by(

1−
( ε

3

)2d
)(3/ε)2d

=

(
1− 1

(3/ε)2d

)(3/ε)2d

≤ 1

e
<

1

2
.

This finishes the proof of Theorem 4.1.

5. A FASTER POLYNOMIAL TIME
APPROXIMATION SCHEME

The goal of this section is to present a PTAS for the
optimization version of Minimax Approval Voting run-

ning in time nO(1/ε2·log(1/ε)) · poly(m). It is achieved by
combining the parameterized approximation scheme from
Theorem 4.1 with the following result, which might be of
independent interest. Throughout this section OPT de-
notes the value of an optimum solution s for the given
instance ({si}i=1,...,n, k) of Minimax Approval Voting,
i.e., OPT = maxi=1,...,nH(s, si),

Theorem 5.1. There exists a randomized polynomial time
algorithm which, for arbitrarily small fixed p > 0, given an
instance ({si}i=1,...,n, k) of Minimax Approval Voting
and any ε > 0 such that OPT ≥ 122 lnn

ε2
, reports a solution,

which with probability at least 1 − p is at distance at most
(1 + ε) ·OPT from S.

In what follows, we prove Theorem 5.1. As in the proof
of Theorem 4.1 we assume w.l.o.g. p = 1/2. Note that
we can assume ε < 1, for otherwise it suffices to use the
2-approximation of Caragiannis et al. [6]. We also assume
n ≥ 3, for otherwise it is a straightforward exercise to find
an optimal solution in linear time. Let us define a linear
program (9–12):

minimize d (9)
m∑
j=1

xj = k (10)

∑
j=1,...,m
si[j]=1

(1− xj) +
∑

j=1,...,m
si[j]=0

xj ≤ d ∀i ∈ {1, . . . , n} (11)

xj ∈[0, 1] ∀j ∈ {1, . . . ,m} (12)

The linear program (9–12) is a relaxation of the natural
integer program for Minimax Approval Voting, obtained
by replacing (12) by the discrete constraint xj ∈ {0, 1}.
Indeed, observe that xj corresponds to the j-th letter of the
solution x = x1 · · ·xm, (10) states that n1(x) = k, and (11)
states that H(x, S) ≤ d.

Our algorithm is as follows (see Pseudocode 2). First we
solve the linear program in time poly(n,m) using the interior



Pseudocode 2: The algorithm from Theorem 5.1

1 Solve the LP (9–12) obtaining an optimal solution
(x∗1, . . . , x

∗
m, d

∗);
2 for j ∈ {1, 2, . . . ,m} do
3 Set x[j]← 1 with probability x∗j and x[j]← 0 with

probability 1− x∗j
4 y ← any k-completion of x;

5 return y

point method [16]. Let (x∗1, . . . , x
∗
m, d

∗) be the obtained opti-
mal solution. Clearly, d∗ ≤ OPT. We randomly construct a
string x ∈ {0, 1}m, guided by the values x∗j . More precisely,
for every j = 1, . . . ,m independently, we set x[j] = 1 with
probability x∗j . Note that x needs not contain k ones. Let y
by any k-completion of x. The algorithm returns y.

Clearly, the above algorithm runs in polynomial time. In
what follows we bound the probability of error. To this end
we prove upper bounds on the probability that x is far from
S and the probability that the number of ones in x is far
from k. This is done in Lemmas 5.3 and 5.4, which can be
shown using standard Chernoff bounds (see e.g. Chapter 4.1
in [29]).

Theorem 5.2. (Motwani et al. [29]) Let X1,X2, . . . ,Xn

be n independent random 0-1 variables such that for every
i = 1, . . . , n we have Pr [Xi = 1] = pi, for pi ∈ [0, 1]. Let
X =

∑n
i=1 Xi. Then,

• for any 0 < ε ≤ 1 we have:

Pr [X > (1 + ε) · E [X]] ≤ exp
(
− 1

3
ε2 · E [X]

)
(13)

Pr [X < (1− ε) · E [X]] ≤ exp
(
− 1

2
ε2 · E [X]

)
(14)

• for any 1 < ε we have:

Pr [X > (1 + ε) · E [X]] ≤ exp
(
− 1

3
ε · E [X]

)
(15)

Pr [X < (1− ε) · E [X]] = 0 (16)

Lemma 5.3.

Pr
[
H(x, S) > (1 + ε

2
) ·OPT

]
≤ 1

4
.

Proof. For every i = 1, . . . , n we define a random variable
Di that measures the distance between x∗ and si

Di =
∑
j∈[m]
si[j]=1

(1− x[j]) +
∑
j∈[m]
si[j]=0

x[j].

Note that x[i] are independent 0-1 random variables. Using
linearity of the expectation we obtain

E[Di] = E

 ∑
j∈[m],si[j]=1

(1− x[j]) +
∑

j∈[m],si[j]=0

x[j]

 =

=
∑

j∈[m],si[j]=1

(1− E[x[j]]) +
∑

j∈[m],si[j]=0

E[x[j]] =

=
∑

j∈[m],si[j]=1

(1− x∗j ) +
∑

j∈[m],si[j]=0

x∗j ≤

≤ d∗ ≤ OPT. (17)

Note that Di is a sum of m independent 0-1 random variables
Xj = 1−x[j] when si[j] = 1 and Xj = x[j] otherwise. Denote

δ = ε · OPT
2E[Di]

. We apply Chernoff bounds. For δ < 1 we have

Pr[Di >
(
1 + ε

2

)
·OPT]

(17)

≤
≤ Pr

[
Di > E[Di] + ε

2
·OPT

]
=

= Pr [Di > (1 + δ) · E[Di]]
(13)

≤

≤ exp

(
−1

3

(
ε · OPT

2E[Di]

)2

E[Di]

)
(17)

≤

≤ exp

(
− ε

2 ·OPT

12

)
.

In case δ ≥ 1 we proceed analogously, using the Chernoff
bound (15)

Pr[Di >
(
1 + ε

2

)
·OPT]

(15)

≤

≤ exp

(
− ε ·OPT

6

)
1>ε

≤ exp

(
− ε

2 ·OPT

12

)
.

Now we use the union bound to get the claim.

Pr
[
H(x, S) > (1 + ε

2
) ·OPT

]
=

= Pr
[
∃i ∈ [n] Di >

(
1 + ε

2

)
·OPT

]
≤

≤ n · exp

(
− ε

2 ·OPT

12

)
≤

≤ n · exp

(
−

122 lnn
OPT

·OPT

12

)
< n−9 n≥3

<
1

4
. (18)

Lemma 5.4.

Pr
[
|n1(x)− k| > ε

2
·OPT

]
≤ 1

4
.

Proof. First we note that

E[n1(x)] = E
[ ∑
j∈[m]

x[j]
]

=
∑
j∈[m]

E[x[j]] =
∑
j∈[m]

x∗j = k.

(19)
Pick an i = 1, . . . , n. Define the random variables

Ei =
∑

j∈[m],si[j]=1

(1− x[j]), Fi =
∑

j∈[m],si[j]=0

x[j].

Let Di = Ei + Fi, as in the proof of Lemma 5.3. By (17) we
have

E[Ei] ≤ E[Ei] + E[Fi] = E[Di] ≤ OPT (20)

E[Fi] ≤ E[Ei] + E[Fi] = E[Di] ≤ OPT (21)

Both Ei and Fi are sums of independent 0-1 random
variables and we apply Chernoff bounds as follows. When
1
4
ε · OPT

E[Ei]
≤ 1 then using (13) and (14) we obtain

Pr

[∣∣∣Ei − E[Ei]
∣∣∣ > 1

4
ε ·OPT

]
(13),(14)

≤

≤ exp

(
−1

3
· 1

16
ε2 · (OPT)2

E2 [Ei]
· E[Ei]

)
+

+ exp

(
−1

2
· 1

16
ε2 · (OPT)2

E2 [Ei]
· E[Ei]

)
20

≤

≤ 2 · exp

(
− 1

48
ε2 ·OPT

)
,



otherwise
(

1
4
ε · OPT

E[Ei]
> 1
)

, using (15) and (16), we have

Pr

[∣∣∣Ei − E[Ei]
∣∣∣ > 1

4
ε ·OPT

]
(15),(16)

≤

≤ exp

(
−1

3
· 1

4
ε · OPT

E[Ei]
· E[Ei]

)
+ 0 ≤

≤ exp

(
− 1

12
ε ·OPT

)
1>ε

≤ 2 · exp

(
− 1

48
ε2 ·OPT

)
.

To sum up, in both cases we have shown that

Pr
[∣∣∣Ei − E[Ei]

∣∣∣ > ε

4
·OPT

]
≤ 2 · exp

(
− 1

48
ε2 ·OPT

)
.

(22)
Similarly we show

Pr
[∣∣∣Fi − E[Fi]

∣∣∣ > ε

4
·OPT

]
≤ 2 · exp

(
− 1

48
ε2 ·OPT

)
.

(23)
We see that

n1(x) =
∑
j∈[m]

x[j] = n1(si)−
∑

j∈[m],si[j]=1

(1− x[j])+

+
∑

j∈[m],si[j]=0

x[j] = n1(si)− Ei + Fi (24)

and hence

E[n1(x)] = n1(si)− E[Ei] + E[Fi]. (25)

Additionally we will use

∀x, y ∈ R |x− y| > a =⇒ |x| > a/2 ∨ |y| > a/2. (26)

Now we can write

Pr
[∣∣∣n1(x)− k

∣∣∣ > 1
2
ε ·OPT

]
(19)
=

= Pr
[∣∣∣n1(x)− E[n1(x)]

∣∣∣ > 1
2
ε ·OPT

]
(24),(25)

=

= Pr
[∣∣∣n1(si)− Ei + Fi+

−n1(si) + E[Ei]− E[Fi]
∣∣∣ > 1

2
ε ·OPT

] (26)

≤

≤ Pr
[∣∣∣Ei − E[Ei]

∣∣∣ > 1
4
ε ·OPT ∨

∨
∣∣∣Fi − E[Fi]

∣∣∣ > 1
4
ε ·OPT

]
≤

≤ Pr
[∣∣∣Ei − E[Ei]

∣∣∣ > 1
4
ε ·OPT

]
+

+ Pr
[∣∣∣Fi − E[Fi]

∣∣∣ > 1
4
ε ·OPT

] (22),(23)

≤

≤ 4 · exp
(
− 1

48
ε2 ·OPT

) assum.

≤ 4 · exp
(
− 122 lnn

48

) n≥3
< 1

4
.

Now we can finish the proof of Theorem 5.1. By Lem-
mas 5.3 and 5.4 with probability at least 1/2 both H(x, S) ≤
(1 + 1

2
ε) ·OPT and H(y, x) = |n1(x)− k| ≤ 1

2
ε ·OPT. By the

triangle inequality this implies that H(y, S) ≤ (1 + ε) ·OPT,
with probability at least 1/2 as required.

We conclude the section by combining Theorems 4.1 and 5.1
to get a faster PTAS.

Theorem 5.5. For each ε > 0 we can find (1 + ε) ap-
proximation solution for the Minimax Approval Voting

problem in time n
O

(
log 1/ε

ε2

)
·poly(m) with probability at least

1− r, for any fixed r > 0.

Proof. First we run algorithm from Theorem 4.1 for
d = d 122 lnn

ε2
e and p = r/2.

If it reports a solution, for every d′ ≤ d we apply Theo-
rem 4.1 with p = r/2 and we return the best solution. If
OPT ≥ d, even the initial solution is at distance at most
(1 + ε)d ≤ (1 + ε)OPT from S. Otherwise, at some point
d′ = OPT and we get (1 + ε)-approximation with probability
at least 1− r/2 > 1− r.

In the case when the initial run of the algorithm from
Theorem 4.1 reports NO, we just apply the algorithm from
Theorem 5.1, again with p = r/2. With probability at least
1− r/2 the answer NO of the algorithm from Theorem 4.1
is correct. Conditioned on that, we know that OPT > d ≥
122 lnn
ε2

and then the algorithm from Theorem 5.1 returns a
(1 + ε)-approximation with probability at least 1− r/2. Thus,
the answer is correct with probability at least (1− r/2)2 >
1− r.

The total running time can be bounded as follows.

O∗
((

3

ε

) 244 lnn
ε2

)
⊆ nO

(
log 1/ε

ε2

)
· poly(m).

6. FURTHER RESEARCH
We conclude the paper with some questions related to

this work that are left unanswered. Our PTAS for Minimax
Approval Voting is randomized, and it seems there is no
direct way of derandomizing it. It might be interesting to
find an equally fast deterministic PTAS. The second question
is whether there are even faster PTASes for Closest String
or Minimax Approval Voting. Recently, Cygan et al. [10]

showed that under ETH, there is no PTAS in time f(ε)·no(1/ε)
for Closest String. This extends to the same lower bound
for Minimax Approval Voting, since we can try all values
k = 0, 1, . . . ,m. It is a challenging open problem to close the
gap in the running time of PTAS either for Closest String
or for Minimax Approval Voting.
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