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ABSTRACT
We introduce a voting rule for committee selection that cap-
tures positive correlation (synergy) between candidates. We
argue that positive correlation can naturally happen in com-
mon scenarios that are related to committee selection. For
example, in the movies selection problem, where prospec-
tive travelers are requested to choose the movies that will
be available on their flight, it is reasonable to assume that
they will tend to prefer voting for a movie in a series, only
if they can watch also the former movies in that series. In
elections to the parliament, it can be that two candidates
are working extremely well together, so voters will benefit
from being represented by both of them together.

In our model, the preferences of the candidates are rep-
resented by set functions, and we would like to maximize
the total satisfaction of the voters. We show that although
computing the best solution is NP-hard, there exists an ap-
proximation algorithm with approximation guarantees that
deteriorate gracefully with the amount of synergy between
the candidates. This amount of synergy is measured by
a natural extension of the supermodular degree [Feige and
Izsak, ITCS 2013] that we introduce – the joint supermodular
degree.

1. INTRODUCTION
Consider the following scenario (see, e.g., [9, 21]). An

airline wishes to increase the satisfaction of the travelers
by letting them choose the set of movies that will be avail-
able on their flight. It is decided to store on the airplane
some fixed number k of movies. The airline surveys the
preferences of the prospective passengers of the flight, and
aims to make the best decision given their preferences. Two
questions arise. First, how should the preferences of the
prospective travelers be modeled? Second, given the pref-
erences of the travelers, how should the set of movies be
chosen? This problem of choosing some fixed number of
candidates to the satisfaction of the voters is a fundamental
problem. Generally speaking, in the k-commitee selec-
tion problem, we have a set V of n voters and a set C of
m candidates, and we would like to select k candidates out
of the m, such that the voters will be most satisfied. The
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answers to the two questions above vary in the literature.
For example, by the Chamberlin-Courant rule we have a
value for each of the candidates, by each of the voters, and
the satisfaction of a voter is measured by the highest value
she has for any elected candidate. The overall satisfaction
is either the sum of the values of the voters or the value
of the least satisfied voter (utilitarian [5] or egalitarian [2]
variant, respectively). Other possibilities are to aggregate
for every voter her value for every elected candidate or to
give higher weight for candidates ranked higher by her (e.g.
Borda rule). In a recent work, Skowron, Faliszewski and
Lang [21] introduce an elegant model that captures the lat-
ter examples as well as others. They model the preferences
of each voter by an intrinsic value for each of the candi-
dates. Then, they calculate the value of a possible set of
k candidates by a voter, by ordering her k intrinsic values
for the k candidates, and multiplying them by some weight
that corresponds to their rank in the order. This vector of
weights is called “OWA operator” (Ordered Weighted Aver-
age). Skowron, Faliszewski and Lang [21] study their model
for different restrictions on the OWA vector. Among their
results, they show a (1 − 1/e)-approximation algorithm for
the case of non-increasing weights OWA vectors, by showing
it is captured by submodular set functions.1

However, none of the models above capture positive cor-
relation (i.e. synergy) between specific candidates (see Sec-
tion 2.2 for further discussion). Positive correlation can hap-
pen in various cases: from two candidates to the parliament
that are working great together (see Woolley et al. [22] for a
research about collective intelligence), to a series of movies
that people tend to prefer watching the latter parts only af-
ter watching the former parts. In this paper we suggest a
voting rule that captures positive correlation between spe-
cific candidates. Specifically, our answers to the two ques-
tions above are:

• The preferences of each of the candidates are modeled
by a non-decreasing monotone set function from sub-
sets of candidates to non-negative real numbers.

• A set of k candidates that maximizes the sum of values
of the voters is elected.

We formally present our model in Section 4. In order
to measure the amount of synergy between different candi-
1A submodular set function is a function f : 2M → R+, such
that for every S′ ⊆ S ⊆ M , and every j ∈ M , f(j | S′) ≥
f(j | S), where f(j | S) = f({j}∪S)− f(S) is the marginal
value of j with respect to S. That is, the marginal values
are monotone non-increasing



dates, we extend the supermodular degree [10], by introduc-
ing the joint supermodular degree (Section 4.1).

We also study applications for the model. In Section 5, we
justify the naturalness of the joint supermodular degree from
an applicative view point. In Section 6, we demonstrate how
preference elicitation can be practically done.

Finally, in Section 7, we study the computability of our
voting rule. On the bright side, we show that although com-
puting the optimum is, generally, NP-hard, one can approx-
imate the optimum with a guarantee that depends on the
amount of synergy between different candidates, as mea-
sured by the joint supermodular degree. On the flip side,
we show that the same results cannot be achieved for the
supermodular degree.

2. PRELIMINARIES
The definitions below are taken from the works [10, 11].

Let C be a set of items (e.g. candidates in election, movies to
watch on an airplane) and let f : 2C → R+ be a set function
(e.g. of preferences of one of the voters). The following
definition is standard.

Definition 1. Let c ∈ C. The marginal set function fc :
2C\{c} → R+ is a function mapping each subset S ⊆ C \ {c}
to the marginal value of c given S:

fc(S)
def
= f(S ∪ {c})− f(S) .

We denote the marginal value fc(S) by f(c | S). For S′ =
{c1, . . . , c|S′|} ⊆ C and S ⊆ C \ S′ we also use either of
the notations f(c1, . . . , c|S′| | S) or f(S′ | S) to indicate
f(S ∪ S′)− f(S).

The following definitions were introduced by Feige and
Izsak [10].

Definition 2. Let c ∈ C. The supermodular dependency
set of c by f is the set of all items c′ ∈ C such that there
exists S ⊆ C \ {c, c′} such that f(c | S ∪ {c′}) > f(c | S).
We denote the supermodular dependency set of c by D+

f (c).
We sometimes omit f , when it is clear from the context.

Definition 3. The supermodular degree of f is defined

as D+
f

def
= maxc∈C |D+

f (c)|.

2.1 Representation of set functions
Let f : 2C → R+ be a set function. Then, f associates

values to 2|C| possible subsets. If we want our algorithms to
run in time polynomial in |C|, they, of course, cannot read
an input that is exponential in C. Therefore, it is crucial to
consider the representation of set functions. One common
way to represent set functions is by queries. Another is by
an explicit representation. In this section, we mention both.

Queries
The arguably simplest queries are the following.

Definition 4. Value queries for f are defined as follows:
Input: A subset S ⊆ C.
Output: f(S).

That is, if we assume our algorithm has access to value
queries for a given set function, we merely assume it can
ask for the value of a subset by the function. Another type
of queries that we use (see [10]) is the following.

Definition 5. Supermodular queries for f are defined as
follows:
Input: An item (i.e. a candidate) c ⊆ C.
Output: D+

f (c).

That is, given a candidate we can ask with whom she has a
positive correlation as defined by the supermodular depen-
dencies. In the context of movies, we can ask for a movie
that is part of a series, what are the other movies in that
series. See Section 5 for further discussion.

An explicit representation
Another way to represent set functions is by an explicit rep-
resentation. For example, any set function can be repre-
sented in a unique way by a hypergraph with weighted edges
(see [1, 6, 8]). In this representation, a vertex is introduced
for each of the items in the ground set of f . The weights
in the sub-hypergraph induced by a set of vertices sum up
exactly to the value of the subset with the respective items,
by f . To see how weights can be allocated, consider the fol-
lowing iterative process. To hyperedges of size 1, we allocate
weights that are the values of the respective singleton sub-
sets. Note that this allocation of weights to hyperedges is
unique. Then, for hyperedges of size 2, we allocate weights
that are the difference between the value of the respective
subset and the sum of the weights of their two singleton sub-
sets. Note that this allocation is unique, as well. Also note
that after iteration `, the values by the hypergraph repre-
sentation are correct for subsets of size up to `. We proceed
iteratively till we arrive to the unique edge of size |C|, and
then we have a representation of the set function for any size
of subset.

A succinct representation.
We say that a representation of a set function is succinct if

its size is polynomially bounded by the size of the ground set
of the function. Note that in the hypergraph representation,
we can list only the edges of value different from 0. So,
sometimes this representation can be succinct. In particular,
for additive set functions we clearly allocate non-zero values
only for the hyperedges of size 1.

2.2 Related work
We list here some of the voting rules from the literature,

mostly based on Masthoff [16], and also on the works [7, 9,
15, 16, 17, 21].

• Plurality: When electing a single candidate, plural-
ity means selecting the candidate who is ranked first
among the candidates, for the highest number of vot-
ers. When “ranked first” can mean that by the voting
rule, preferences are ranks of candidates, or alterna-
tively, that there are values for the candidates by the
different voters that are used in order to get the can-
didates’ ranks. In order to use this rule for choosing
k candidates, one can just repeat it k times, while re-
moving the winner at each iteration.

• Utilitarian: Each voter has a value for each of the can-
didates, and these values are summed up. The k can-
didates with the largest sums win.

• Borda [4]: This voting rule assumes the preferences
of the candidates are modeled as a list of ranks, and



it converts this list to values, with higher values for
higher ranks: m − 1,m − 2, . . . , 0 for ranks 1, . . . ,m,
respectively (m is the number of candidates). These
values are summed up and highest scores win, similarly
to the utilitarian rule above.

• Copeland: The score of a candidate is the number of
pairwise elections she wins (by plurality) minus the
number of pairwise elections she loses (ties do not
count). Values are again, summed up, and higher
scores win.

• Maximin: The score of a candidate c with respect to
a candidate c′ is the number of voters that prefer c
over c′ (we denote it by scorec(c

′). The score of a
candidate c is the minimum score of c with respect
to a candidate (i.e. argminc′ scorec(c

′)). For example,
if for a candidate c, there exists a candidate that is
preferred by all of the voters, then c will get a value
of 0. If for a candidate c, all the voters prefer it over
all the candidates, then (and only then) she will get
the maximal score of n (i.e. the number of voters).

• Approval voting: Each voter either approves or disap-
proves every candidate. The k candidates with largest
number of approvals win.

Positional scoring.
Positional scoring is a bunch of voting rules, where the

preferences of the voters are just an ordering of the candi-
dates and the rule is defined by a vector of size m of values
corresponding to positions by the voters. The total value of
a candidate is the sum of these values of the voters. Note
that plurality is a positional scoring rule with the vector
(1, 0, . . . , 0) and Borda is a positional scoring rule with the
vector (m−1,m−2, . . . , 0). There is also a rule called“Veto”
where the vector is (1, . . . , 1, 0), so a voter actually chooses
one candidate she prefers not to include in the selected com-
mittee.

Weighted aggregation of preferences of a voter.
Skowron, Faliszewski and Lang [21] introduced the fol-

lowing family of voting rules for choosing k out of m can-
didates. The preferences of the voters are intrinsic values
for the different candidates, and additionally, there is a vec-
tor of size k that is called OWA (ordered weighted aver-
age). When calculating the value for a set of k candidates
by the preferences of a single voter, we do the following.
We order the k candidates by their values according to the
voter, in an increasing order of values, and then we sum
up the values multiplied by the OWA vector (inner prod-
uct). That is, every value is multiplied by a weight appear-
ing in the OWA vector that corresponds to the rank of the
candidate by the voter. To calculate the overall value of
a subset of k candidates, we sum up the values of this set
of candidates by the voters (utilitarian model). Skowron,
Faliszewski and Lang [21] show that when the OWA vec-
tor is non-increasing (that is higher ranked candidates by a
voter are multiplied by higher (or equal) weights), then the
preferences of the voters can be represented by a submod-
ular set function, and therefore a (1 − 1/e)-approximation
guarantee can be achieved in polynomial time, by using the
classical algorithm of Fisher, Nemhauser and Wolsey [14].

When the OWA vector is not non-increasing, some positive
correlation between the candidates can happen, but not be-
tween specific candidates. For example, in the min OWA
vector (0, . . . , 0, 1), only the worst candidate in the selected
committee counts. This means, roughly speaking, that all
the candidates should be adequate by a voter in order to
have an adequate score by her. In terms of set functions,
it means as follows. The marginal value of a candidate is
0 with respect to any committee that contains a worse (or
equal) candidate. The marginal value of a candidate with
respect to a committee that contains only better candidates
is the difference between the intrinsic values of the new can-
didate and of the worst candidate in the committee. For
example, adding a candidate with an intrinsic value of 1 to
a committee, when the worse candidate in it has an intrinsic
value of 10 means a marginal value of (−9). On the other
hand, if there is also a candidate with an intrinsic value of
2 in the committee, then the marginal value of the new one
will be (−1). That is, the marginal value of the new candi-
date increased because of the inclusion of the candidate with
a value of 2. However, it is clear that this does not model
synergy between these two candidates. Moreover, positive
correlation between specific candidates cannot be modeled
using OWA vectors, as described above, since they cannot
relate to specific candidates differently. This means that in
scenarios like the movies example described earlier, a posi-
tive correlation within a series of movies cannot be modeled.
In this sense, our model adds new possibilities with respect
to the model of Skowron, Faliszewski and Lang [21].

Another relevant model was studied by Fishburn and Pekec [13].
Fishburn and Pekec [13] studied an approval voting model,
where each of the voters can approve a few candidates, and
a committee is approved by a voter if it contains a sufficient
number of candidates that are approved by the voter.

3. OUR CONTRIBUTION
This paper introduces a new model for voting rules, based

on set functions, together with the required conceptual frame-
work. Our model can be used to model both synergy be-
tween candidates (i.e. compliments) and substitutes (e.g.,
two candidates that each of them is worth 1 and both of
them together are worth 1, as well). Since general set func-
tions might be highly complex, we introduce the joint super-
modular degree, which we see as a natural extension of the
supermodular degree [10]. We demonstrate applications for
our model in Section 5. In particular, we suggest practical
preference elicitation that is tailored for the joint supermod-
ular degree in Section 6.

Finally, in Section 7, we show how the joint supermodu-
lar degree enables one to easily use existing algorithms for
function maximization that are tailored for the supermod-
ular degree to achieve approximations for our voting rule.
Since there exist such algorithms both for offline and online
settings, one can use either and immediately get approxi-
mation guarantees for our voting rule in the corresponding
setting. Moreover, future algorithms for the supermodu-
lar degree can also be easily used by our framework, to get
computational results for committee selection. Conceptu-
ally speaking, the result of the approximation algorithms
can also be seen as the voting rule itself (see Skowron, Fal-
iszewski and Lang [21]). We complement our algorithmic
result with a proof of computational hardness.

To the best of our knowledge, our results represent the



first voting rules that capture synergy between specific can-
didates.

4. THE MODEL
We formally define our model. Let V = {v1, . . . , vn} be

a set of n voters, let C be a set of m candidates and let
k be an integer. Let f1, . . . , fn : 2C → R+ be preference
(set) functions, associated with the voters v1, . . . , vn, re-
spectively. We assume that the preferences functions are
normalized (i.e., ∀ifi(∅) = 0) and non-decreasing monotone
(i.e., ∀i,S′⊆S⊆Mfi(S

′) ≤ fi(S)). Our aim is to choose a set
Cmax ⊆ C of size k that maximizes the satisfaction of the
voters by their personal preferences:

Cmax = argmax
S⊆C||S|=k

n∑
i=1

fi(S) .

We refer to this problem as (the) k-commitee selection
problem and to the selected subset as the selected commit-
tee. Note that this problem can be seen as a voting rule.
Alternatively, an approximation algorithm to this problem
can be seen as the voting rule (see also Skowron, Faliszewski
and Lang [21]).

4.1 The joint supermodular degree
We introduce the following natural extensions of the defi-

nitions of Feige and Izsak [10] to a collection of set functions.

Definition 6. Let f1, . . . , ft be set functions for some
t ∈ N and let c ∈ C. The joint supermodular dependency
set of c by f1, . . . , ft is

⋃t
i=1D

+
fi

(c).

Definition 7. The joint supermodular degree of f1, . . . , ft
is the maximum cardinality among the cardinalities of joint
dependency sets of items of C by f1, . . . , ft.

The main property of the joint supermodular degree that
we use is that the sum function of functions with joint su-
permodular degree of at most d has supermodular degree of
at most d.

We think this definition is natural for voting rules, since
it means that positive correlation between the candidates
can be modeled, when it is inherent to the candidates them-
selves, and not to the perspective of the voters about them.

For example, if a candidate is working well together with 2
other candidates, then each of the voters has the possibil-
ity to give these 3 candidates or any subset of them a score
that is higher than the sum of their individual scores. How-
ever, if a candidate does not work well with some other
candidate, then none of the voters has the possibility to give
them together a score that is higher than the sum of their
individual scores. That is, the set of other candidates that
the candidate has synergy with depends on her. The deci-
sion of whether to take this into account depends on each of
the voters. So, the supermodular dependency set of a candi-
date c, by any of the preference functions of the voters, will
contain only other candidates that have synergy (i.e. are
working well together) with c.

We discuss applications of our model with respect to the
joint supermodular degree in Section 5. In particular, we
suggest preference elicitation in Section 6.

5. APPLICATIONS

We discuss in this section applications of our model, to-
gether with the joint supermodular degree. Specifically, we
demonstrate its merits for two real world examples (see [9]).

• Parliamentary elections: In voting to the parliament,
it is possible that candidates complement each other,
and work better together. It was actually shown by
Woolley et al. [22] that there is a measure for the col-
lective intelligence of a group of people that is different
from the intelligence quantities of different people in
the group. So, it seems reasonable to allow the voters
to give extra value for choosing together a pair of can-
didates that are known to work well together on, e.g.,
suggesting complex laws in the parliament. Note that
the fact that two candidates are working well together
is related to the candidates and not to the voters, and
indeed, the joint supermodular degree of the voters will
reflect the synergies between the candidates.

• Movie selection: Consider the problem of choosing k
movies to be available on an airplane (passengers can
watch on their flight movies from the selected set).
It seems reasonable that people would prefer to watch
latter parts of a series only after the former. Moreover,
it might be unreasonable to consider a series of movies
as one movie, if, e.g., physical storage is a limitation.
Then, it is plausible to give the prospective passen-
gers the possibility to give higher values for movies in
the series, given that all the former are selected, as
well. Additionally, movie selection can admit submod-
ular behaviour (i.e. substitutes). For example, since
the time of the flight is bounded, the number of movies
one can watch out of the k selected movies is bounded,
as well. This means that, if for example, k = 100 and
the time of the flight allows one passenger to watch up
to 5 movies, then any movie out of the k that is not
among the 5 best for that passenger is redundant for
her. So her value will not increase given that we add to
the selected set other great movies. On the other hand,
we do want to allow k to be large enough to allow dif-
ferent passengers to enjoy different movies. The latter
behaviour is submodular. Synergy between selected
movies is supermodular. Our model enables one to
express such preferences. Furthermore, submodularity
does not hurt the approximation guarantees, since it
does not increase the joint supermodular degree of the
preference functions (see Section 7).

6. PREFERENCE ELICITATION
Consider the movies selection example. When a prospec-

tive passenger is asked to express her preferences about pos-
sible movies, it seems unreasonable to require her to specify
her values for all the exponentially many possibilities. We
briefly demonstrate a simple user interface to elicit users’
preferences in that case, while enabling them to benefit from
the possibility of expressing positive correlations.

The user interface will be as follows. Each of the prospec-
tive passengers will be able to give a value for each of the
possible movies (these are the values of the singleton sub-
sets). In addition, the prospective passengers will be able
to add for each of the movies other values – the marginal
values of a movie, with respect to a subset of its joint su-
permodular dependency set (i.e., other movies in the same
series). In order to select such a subset of the movies, a



list of the movies in the joint supermodular dependency set
will be presented, and a passenger will be able to select the
relevant movies (e.g. by checking them by a ‘V’). In order
to enforce the preference functions of the prospective pas-
sengers to be well defined (i.e. a single value for each of the
subsets), we will let the prospective passengers check by a
’V’ only the movies that were former to a movie in a series.

Note that the supermodular dependency is symmetric (see
[10] for a proof). So, in a series of movies, also the former
movies are dependent on the latter movies. As an example,
one can think of two movies, where each of them is worth 1,
but the second one is worth 10 with respect to the first.
Then, both movies together are worth 11, and the marginal
contribution of each of them with respect to the other is 10,
instead of 1 (as it is with respect to the empty set).

Generally speaking, this example interface can be extended
in any way that enforces the preference functions to be well
defined (e.g. by ordering the items and letting the prospec-
tive passengers to check a dependency by ’V’ only if it is
before the current item in that ordering).

To see the power of combining supermodular dependencies
with submodular behaviour, note that we can also ask each
passenger how many movies she would like to watch in her
flight (with a maximum that depends on the duration of the
flight), and then calculate as her preference, the best subset
of that number of movies, from any input subset of movies.

Note that it is easy to emulate both value and supermod-
ular queries using such a representation, and then to use
the algorithms of Feldman and Izsak [11], as described in
Section 7.

7. COMPUTATIONAL RESULTS
The following theorem shows that there exists an approxi-

mation algorithm with approximation guarantee that is lin-
ear in the amount of synergy between the candidates, as
measured by the joint supermodular degree of the preference
functions of the voters. For submodular set functions, the
result described by the theorem coincides with the optimal
result for submodular set functions of Fisher, Nemhauser
and Wolsey [14] that is used by Skowron, Faliszewski and
Lang [21].

Theorem 1. When the joint supermodular degree of the
preferences functions of the voters is d, the k-committee
selection problem admits an approximation algorithm with
guarantee (1 − e−1/(d+1)) ≥ 1/(d + 2). The algorithm gets
access to the preference functions by value queries and su-
permodular queries, and its running time is Poly(n,m, 2d).

Note that the above result captures the example of movies
selection from the introduction (see Section 5 for further dis-
cussion). Note also that the proof of the above result applies
to the case of committee selection subject to a general ma-
troid constraint (cardinality constraint is a special case of a
matroid constraint), but with an approximation guarantee
of 1/(d + 2), by using the respective algorithm of Feldman
and Izsak [11].

Moreover, one can use the algorithms of Feldman and
Izsak [12] in order to get an online (secretary like) version of
Theorem 1, when the candidates arrive one by one in an on-
line fashion, and we need to decide on the spot, irrevocably,
whether to elect a candidate or not, based on the preferences
of the voters (for exact details of the model, see [12]). As
an example, consider hiring a team to a project, where each

of the candidates meets with a few interviewers. Then, an
optimal team of candidates should be hired, according to
the preferences of the interviewers.

By using the algorithm of Feldman and Izsak [12] for a
cardinality constraint, one gets an approximation guarantee
polynomial in the joint supermodular degree. Any approxi-
mation guarantee that depends only on the joint supermod-
ular degree gives a constant approximation guarantee, if the
candidates admit synergy only with a constant number of
other candidates (e.g. if there is a positive correlation only
within series of movies, and all the series suggested are of
length up to 3). See also Oren and Lucier [18] for a different
secretary like model.

Additionally, we show a hardness result for the case of
non-bounded joint supermodular degree, even when the su-
permodular degree of all the set functions is bounded by 1.
For this, we use a reduction from the k-dense subgraph prob-
lem (see e.g. Bhaskara el al. [3]).

Definition 8. The k-dense subgraph problem is the fol-
lowing. We are given as input a graph G = (V,E) and an
integer k ∈ N, and our aim is to select k vertices such that
the number of edges in their induced subgraph is maximized.

This problem is NP -hard and it is highly believed it is hard
to approximate it within any constant guarantee. Actually,
no efficient algorithm is currently known that approximates
it within a guarantee better than nc, for some constant c
(see e.g. [3, 19, 20]).

Theorem 2. The k-commitee selection problem is at least
as hard as the k-dense subgraph problem, even if the su-
permodular degree of the set functions is 1, and even if an
explicit representation of the preference functions is given.
This means, in particular, that it is NP-hard2 and SSE-
hard (see [19] and also [20]).

Proof of Theorem 1. Let V be the set of n voters, let
C be the set of m candidates, let k be the requested number
of elected candidates and let f1, . . . , fn : 2C → R+ be the
preference functions of the voters. We prove that since the
joint supermodular degree of f1, . . . , fn is upper bounded by
d, then the supermodular degree of their summation func-

tion fΣ(S)
def
=

∑n
i=1 fi(S) is upper bounded by d, as well.

Note that this would not be necessarily true if only the su-
permodular degree of f1, . . . , fn was bounded by d (or even
by 1). Actually, Theorem 2 serves as a counter example to
the latter for d = 1.

To prove the bound on the supermodular degree of the
summation function fΣ, we show that every supermodular
dependency by fΣ induces the same supermodular depen-
dency by one of the fis in the sum. Let c, c′ ∈ C and S ⊆ C
be such that fΣ(c | S ∪ {c′}) > fΣ(c | S). Then, by the
definition of fΣ,

∑n
i=1 fi(c | S ∪ {c

′}) >
∑n

i=1 fi(c | S). So,
∃1≤i≤n s.t. fi(c | S ∪ {c′}) > fi(c | S), as claimed.

Now, we can just use the algorithm of [11] for mono-
tone function maximization subject to uniform matroid con-
straint (i.e. cardinality constraint) on the function fΣ with a
constraint k. Note that the latter algorithm gives an optimal
approximation guarantee for submodular set functions, and
generally its guarantee deteriorates linearly with the super-
modular degree. Moreover, its running time is as required
by the Theorem. This concludes the proof of Theorem 1.
2NP -hardness is actually true also for submodular set func-
tions, i.e. supermodular degree of 0.



Proof of Theorem 2. The proof is somewhat similar
to the proof of SSE-hardness for maximizing set function
subject to cardinality constraint, given by [11]. Given an al-
gorithm for solving the k-commitee selection problem within
approximation guarantee α, we show how to solve any input
instance of the k-dense subgraph problem within approxi-
mation guarantee α. Let G = (S,E) be an instance of the
k-dense graph problem. Then, our set of candidates C will
be S (the set of vertices of G). We also introduce a voter
ve for every edge e = {ve1, ve2} ∈ E and let V =

⋃
e∈E{ve}.

For every voter ve, her preference set function is:

fe =

{
1 if ve1 and ve2 are both elected.

0 otherwise

That is, in this instance of the k-committee selection prob-
lem, our aim is to find a subset of k candidates (where the set
of candidates corresponds exactly to the set S of vertices of
G), such that the number of pairs of candidates, that corre-
spond to the preference functions of the voters, is maximized
(where these pairs of candidates are exactly the edges E of
G). This is exactly the k-dense subgraph problem. That
is, given a solution to this instance of k-committee selec-
tion problem, we just output the subset of vertices of S that
corresponds to the candidates in C that were selected, as a
solution to the input instance of the k-dense subgraph prob-
lem. This gives us a feasible solution with the same value,
and thus with the same approximation guarantee α. This
concludes the proof of Theorem 2.

8. CONCLUSIONS
We suggest a new voting rule for committee selection that

enables the voters to express positive correlation between
the candidates. We also introduce the joint supermodular
degree that enables us to use existing computational results
for the supermodular degree, and get efficient approximation
algorithms for our voting rule. We see our work as a proof
of concept, and hope that it will lead to further study of
committee selection with positive correlation between the
candidates.
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