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Working Together: Committee Selection and the

Supermodular Degree

Rani Izsak

Department of Computer Science and Applied Mathematics

Weizmann Institute of Science

Rehovot, Israel

ran.izsak@weizmann.ac.il

ABSTRACT
We introduce a voting rule for committee selection that cap-
tures positive correlation (synergy) between candidates. We
argue that positive correlation can naturally happen in com-
mon scenarios that are related to committee selection. For
example, in the movies selection problem, where prospec-
tive travelers are requested to choose the movies that will
be available on their flight, it is reasonable to assume that
they will tend to prefer voting for a movie in a series, only
if they can watch also the former movies in that series. In
elections to the parliament, it can be that two candidates
are working extremely well together, so voters will benefit
from being represented by both of them together.

In our model, the preferences of the candidates are rep-
resented by set functions, and we would like to maximize
the total satisfaction of the voters. We show that although
computing the best solution is NP-hard, there exists an ap-
proximation algorithm with approximation guarantees that
deteriorate gracefully with the amount of synergy between
the candidates. This amount of synergy is measured by
a natural extension of the supermodular degree [Feige and
Izsak, ITCS 2013] that we introduce – the joint supermodular

degree.

1. INTRODUCTION
Consider the following scenario (see, e.g., [9, 21]). An

airline wishes to increase the satisfaction of the travelers
by letting them choose the set of movies that will be avail-
able on their flight. It is decided to store on the airplane
some fixed number k of movies. The airline surveys the
preferences of the prospective passengers of the flight, and
aims to make the best decision given their preferences. Two
questions arise. First, how should the preferences of the
prospective travelers be modeled? Second, given the pref-
erences of the travelers, how should the set of movies be
chosen? This problem of choosing some fixed number of
candidates to the satisfaction of the voters is a fundamental
problem. Generally speaking, in the k-commitee selec-

tion problem, we have a set V of n voters and a set C of
m candidates, and we would like to select k candidates out
of the m, such that the voters will be most satisfied. The

Appears at: 4th Workshop on Exploring Beyond the Worst Case in
Computational Social Choice (EXPLORE 2017). Held as part of the Work-
shops at the 16th International Conference on Autonomous Agents and
Multiagent Systems. May 8th-9th, 2017. Sao Paulo, Brazil.

answers to the two questions above vary in the literature.
For example, by the Chamberlin-Courant rule we have a
value for each of the candidates, by each of the voters, and
the satisfaction of a voter is measured by the highest value
she has for any elected candidate. The overall satisfaction
is either the sum of the values of the voters or the value
of the least satisfied voter (utilitarian [5] or egalitarian [2]
variant, respectively). Other possibilities are to aggregate
for every voter her value for every elected candidate or to
give higher weight for candidates ranked higher by her (e.g.
Borda rule). In a recent work, Skowron, Faliszewski and
Lang [21] introduce an elegant model that captures the lat-
ter examples as well as others. They model the preferences
of each voter by an intrinsic value for each of the candi-
dates. Then, they calculate the value of a possible set of
k candidates by a voter, by ordering her k intrinsic values
for the k candidates, and multiplying them by some weight
that corresponds to their rank in the order. This vector of
weights is called “OWA operator” (Ordered Weighted Aver-
age). Skowron, Faliszewski and Lang [21] study their model
for di↵erent restrictions on the OWA vector. Among their
results, they show a (1 � 1/e)-approximation algorithm for
the case of non-increasing weights OWA vectors, by showing
it is captured by submodular set functions.1

However, none of the models above capture positive cor-
relation (i.e. synergy) between specific candidates (see Sec-
tion 2.2 for further discussion). Positive correlation can hap-
pen in various cases: from two candidates to the parliament
that are working great together (see Woolley et al. [22] for a
research about collective intelligence), to a series of movies
that people tend to prefer watching the latter parts only af-
ter watching the former parts. In this paper we suggest a
voting rule that captures positive correlation between spe-
cific candidates. Specifically, our answers to the two ques-
tions above are:

• The preferences of each of the candidates are modeled
by a non-decreasing monotone set function from sub-
sets of candidates to non-negative real numbers.

• A set of k candidates that maximizes the sum of values
of the voters is elected.

We formally present our model in Section 4. In order
to measure the amount of synergy between di↵erent candi-
1A submodular set function is a function f : 2M ! R+, such
that for every S0 ✓ S ✓ M , and every j 2 M , f(j | S0) �
f(j | S), where f(j | S) = f({j}[S)� f(S) is the marginal
value of j with respect to S. That is, the marginal values
are monotone non-increasing



dates, we extend the supermodular degree [10], by introduc-
ing the joint supermodular degree (Section 4.1).

We also study applications for the model. In Section 5, we
justify the naturalness of the joint supermodular degree from
an applicative view point. In Section 6, we demonstrate how
preference elicitation can be practically done.

Finally, in Section 7, we study the computability of our
voting rule. On the bright side, we show that although com-
puting the optimum is, generally, NP-hard, one can approx-
imate the optimum with a guarantee that depends on the
amount of synergy between di↵erent candidates, as mea-
sured by the joint supermodular degree. On the flip side,
we show that the same results cannot be achieved for the
supermodular degree.

2. PRELIMINARIES
The definitions below are taken from the works [10, 11].

Let C be a set of items (e.g. candidates in election, movies to
watch on an airplane) and let f : 2C ! R+ be a set function
(e.g. of preferences of one of the voters). The following
definition is standard.

Definition 1. Let c 2 C. The marginal set function f
c

:
2C\{c} ! R+ is a function mapping each subset S ✓ C \ {c}
to the marginal value of c given S:

f
c

(S)
def
= f(S [ {c})� f(S) .

We denote the marginal value f
c

(S) by f(c | S). For S0 =
{c1, . . . , c|S0|} ✓ C and S ✓ C \ S0 we also use either of
the notations f(c1, . . . , c|S0| | S) or f(S0 | S) to indicate
f(S [ S0)� f(S).

The following definitions were introduced by Feige and
Izsak [10].

Definition 2. Let c 2 C. The supermodular dependency
set of c by f is the set of all items c0 2 C such that there
exists S ✓ C \ {c, c0} such that f(c | S [ {c0}) > f(c | S).
We denote the supermodular dependency set of c by D+

f

(c).
We sometimes omit f , when it is clear from the context.

Definition 3. The supermodular degree of f is defined

as D+
f

def
= max

c2C

|D+
f

(c)|.

2.1 Representation of set functions
Let f : 2C ! R+ be a set function. Then, f associates

values to 2|C| possible subsets. If we want our algorithms to
run in time polynomial in |C|, they, of course, cannot read
an input that is exponential in C. Therefore, it is crucial to
consider the representation of set functions. One common
way to represent set functions is by queries. Another is by
an explicit representation. In this section, we mention both.

Queries

The arguably simplest queries are the following.

Definition 4. Value queries for f are defined as follows:
Input: A subset S ✓ C.
Output: f(S).

That is, if we assume our algorithm has access to value
queries for a given set function, we merely assume it can
ask for the value of a subset by the function. Another type
of queries that we use (see [10]) is the following.

Definition 5. Supermodular queries for f are defined as
follows:
Input: An item (i.e. a candidate) c ✓ C.
Output: D+

f

(c).

That is, given a candidate we can ask with whom she has a
positive correlation as defined by the supermodular depen-
dencies. In the context of movies, we can ask for a movie
that is part of a series, what are the other movies in that
series. See Section 5 for further discussion.

An explicit representation

Another way to represent set functions is by an explicit rep-
resentation. For example, any set function can be repre-
sented in a unique way by a hypergraph with weighted edges
(see [1, 6, 8]). In this representation, a vertex is introduced
for each of the items in the ground set of f . The weights
in the sub-hypergraph induced by a set of vertices sum up
exactly to the value of the subset with the respective items,
by f . To see how weights can be allocated, consider the fol-
lowing iterative process. To hyperedges of size 1, we allocate
weights that are the values of the respective singleton sub-
sets. Note that this allocation of weights to hyperedges is
unique. Then, for hyperedges of size 2, we allocate weights
that are the di↵erence between the value of the respective
subset and the sum of the weights of their two singleton sub-
sets. Note that this allocation is unique, as well. Also note
that after iteration `, the values by the hypergraph repre-
sentation are correct for subsets of size up to `. We proceed
iteratively till we arrive to the unique edge of size |C|, and
then we have a representation of the set function for any size
of subset.

A succinct representation.

We say that a representation of a set function is succinct if
its size is polynomially bounded by the size of the ground set
of the function. Note that in the hypergraph representation,
we can list only the edges of value di↵erent from 0. So,
sometimes this representation can be succinct. In particular,
for additive set functions we clearly allocate non-zero values
only for the hyperedges of size 1.

2.2 Related work
We list here some of the voting rules from the literature,

mostly based on Mastho↵ [16], and also on the works [7, 9,
15, 16, 17, 21].

• Plurality: When electing a single candidate, plural-
ity means selecting the candidate who is ranked first
among the candidates, for the highest number of vot-
ers. When “ranked first” can mean that by the voting
rule, preferences are ranks of candidates, or alterna-
tively, that there are values for the candidates by the
di↵erent voters that are used in order to get the can-
didates’ ranks. In order to use this rule for choosing
k candidates, one can just repeat it k times, while re-
moving the winner at each iteration.

• Utilitarian: Each voter has a value for each of the can-
didates, and these values are summed up. The k can-
didates with the largest sums win.

• Borda [4]: This voting rule assumes the preferences
of the candidates are modeled as a list of ranks, and



it converts this list to values, with higher values for
higher ranks: m � 1,m � 2, . . . , 0 for ranks 1, . . . ,m,
respectively (m is the number of candidates). These
values are summed up and highest scores win, similarly
to the utilitarian rule above.

• Copeland: The score of a candidate is the number of
pairwise elections she wins (by plurality) minus the
number of pairwise elections she loses (ties do not
count). Values are again, summed up, and higher
scores win.

• Maximin: The score of a candidate c with respect to
a candidate c0 is the number of voters that prefer c
over c0 (we denote it by score

c

(c0). The score of a
candidate c is the minimum score of c with respect
to a candidate (i.e. argmin

c

0 score
c

(c0)). For example,
if for a candidate c, there exists a candidate that is
preferred by all of the voters, then c will get a value
of 0. If for a candidate c, all the voters prefer it over
all the candidates, then (and only then) she will get
the maximal score of n (i.e. the number of voters).

• Approval voting: Each voter either approves or disap-
proves every candidate. The k candidates with largest
number of approvals win.

Positional scoring.

Positional scoring is a bunch of voting rules, where the
preferences of the voters are just an ordering of the candi-
dates and the rule is defined by a vector of size m of values
corresponding to positions by the voters. The total value of
a candidate is the sum of these values of the voters. Note
that plurality is a positional scoring rule with the vector
(1, 0, . . . , 0) and Borda is a positional scoring rule with the
vector (m�1,m�2, . . . , 0). There is also a rule called“Veto”
where the vector is (1, . . . , 1, 0), so a voter actually chooses
one candidate she prefers not to include in the selected com-
mittee.

Weighted aggregation of preferences of a voter.

Skowron, Faliszewski and Lang [21] introduced the fol-
lowing family of voting rules for choosing k out of m can-
didates. The preferences of the voters are intrinsic values
for the di↵erent candidates, and additionally, there is a vec-
tor of size k that is called OWA (ordered weighted aver-
age). When calculating the value for a set of k candidates
by the preferences of a single voter, we do the following.
We order the k candidates by their values according to the
voter, in an increasing order of values, and then we sum
up the values multiplied by the OWA vector (inner prod-
uct). That is, every value is multiplied by a weight appear-
ing in the OWA vector that corresponds to the rank of the
candidate by the voter. To calculate the overall value of
a subset of k candidates, we sum up the values of this set
of candidates by the voters (utilitarian model). Skowron,
Faliszewski and Lang [21] show that when the OWA vec-
tor is non-increasing (that is higher ranked candidates by a
voter are multiplied by higher (or equal) weights), then the
preferences of the voters can be represented by a submod-
ular set function, and therefore a (1 � 1/e)-approximation
guarantee can be achieved in polynomial time, by using the
classical algorithm of Fisher, Nemhauser and Wolsey [14].

When the OWA vector is not non-increasing, some positive
correlation between the candidates can happen, but not be-
tween specific candidates. For example, in the min OWA
vector (0, . . . , 0, 1), only the worst candidate in the selected
committee counts. This means, roughly speaking, that all
the candidates should be adequate by a voter in order to
have an adequate score by her. In terms of set functions,
it means as follows. The marginal value of a candidate is
0 with respect to any committee that contains a worse (or
equal) candidate. The marginal value of a candidate with
respect to a committee that contains only better candidates
is the di↵erence between the intrinsic values of the new can-
didate and of the worst candidate in the committee. For
example, adding a candidate with an intrinsic value of 1 to
a committee, when the worse candidate in it has an intrinsic
value of 10 means a marginal value of (�9). On the other
hand, if there is also a candidate with an intrinsic value of
2 in the committee, then the marginal value of the new one
will be (�1). That is, the marginal value of the new candi-
date increased because of the inclusion of the candidate with
a value of 2. However, it is clear that this does not model
synergy between these two candidates. Moreover, positive
correlation between specific candidates cannot be modeled
using OWA vectors, as described above, since they cannot
relate to specific candidates di↵erently. This means that in
scenarios like the movies example described earlier, a posi-
tive correlation within a series of movies cannot be modeled.
In this sense, our model adds new possibilities with respect
to the model of Skowron, Faliszewski and Lang [21].

Another relevant model was studied by Fishburn and Pekec [13].
Fishburn and Pekec [13] studied an approval voting model,
where each of the voters can approve a few candidates, and
a committee is approved by a voter if it contains a su�cient
number of candidates that are approved by the voter.

3. OUR CONTRIBUTION
This paper introduces a new model for voting rules, based

on set functions, together with the required conceptual frame-
work. Our model can be used to model both synergy be-
tween candidates (i.e. compliments) and substitutes (e.g.,
two candidates that each of them is worth 1 and both of
them together are worth 1, as well). Since general set func-
tions might be highly complex, we introduce the joint super-
modular degree, which we see as a natural extension of the
supermodular degree [10]. We demonstrate applications for
our model in Section 5. In particular, we suggest practical
preference elicitation that is tailored for the joint supermod-
ular degree in Section 6.

Finally, in Section 7, we show how the joint supermodu-
lar degree enables one to easily use existing algorithms for
function maximization that are tailored for the supermod-
ular degree to achieve approximations for our voting rule.
Since there exist such algorithms both for o✏ine and online
settings, one can use either and immediately get approxi-
mation guarantees for our voting rule in the corresponding
setting. Moreover, future algorithms for the supermodu-
lar degree can also be easily used by our framework, to get
computational results for committee selection. Conceptu-
ally speaking, the result of the approximation algorithms
can also be seen as the voting rule itself (see Skowron, Fal-
iszewski and Lang [21]). We complement our algorithmic
result with a proof of computational hardness.

To the best of our knowledge, our results represent the



first voting rules that capture synergy between specific can-
didates.

4. THE MODEL
We formally define our model. Let V = {v1, . . . , vn} be

a set of n voters, let C be a set of m candidates and let
k be an integer. Let f1, . . . , fn : 2C ! R+ be preference
(set) functions, associated with the voters v1, . . . , vn, re-
spectively. We assume that the preferences functions are
normalized (i.e., 8

i

f
i

(?) = 0) and non-decreasing monotone
(i.e., 8

i,S

0✓S✓M

f
i

(S0)  f
i

(S)). Our aim is to choose a set
C

max

✓ C of size k that maximizes the satisfaction of the
voters by their personal preferences:

C
max

= argmax
S✓C||S|=k

nX

i=1

f
i

(S) .

We refer to this problem as (the) k-commitee selection

problem and to the selected subset as the selected commit-

tee. Note that this problem can be seen as a voting rule.
Alternatively, an approximation algorithm to this problem
can be seen as the voting rule (see also Skowron, Faliszewski
and Lang [21]).

4.1 The joint supermodular degree
We introduce the following natural extensions of the defi-

nitions of Feige and Izsak [10] to a collection of set functions.

Definition 6. Let f1, . . . , ft be set functions for some
t 2 N and let c 2 C. The joint supermodular dependency
set of c by f1, . . . , ft is

S
t

i=1 D
+
fi
(c).

Definition 7. The joint supermodular degree of f1, . . . , ft
is the maximum cardinality among the cardinalities of joint
dependency sets of items of C by f1, . . . , ft.

The main property of the joint supermodular degree that
we use is that the sum function of functions with joint su-

permodular degree of at most d has supermodular degree of
at most d.

We think this definition is natural for voting rules, since
it means that positive correlation between the candidates
can be modeled, when it is inherent to the candidates them-
selves, and not to the perspective of the voters about them.

For example, if a candidate is working well together with 2
other candidates, then each of the voters has the possibil-
ity to give these 3 candidates or any subset of them a score
that is higher than the sum of their individual scores. How-
ever, if a candidate does not work well with some other
candidate, then none of the voters has the possibility to give
them together a score that is higher than the sum of their
individual scores. That is, the set of other candidates that
the candidate has synergy with depends on her. The deci-
sion of whether to take this into account depends on each of
the voters. So, the supermodular dependency set of a candi-
date c, by any of the preference functions of the voters, will
contain only other candidates that have synergy (i.e. are
working well together) with c.

We discuss applications of our model with respect to the
joint supermodular degree in Section 5. In particular, we
suggest preference elicitation in Section 6.

5. APPLICATIONS

We discuss in this section applications of our model, to-
gether with the joint supermodular degree. Specifically, we
demonstrate its merits for two real world examples (see [9]).

• Parliamentary elections: In voting to the parliament,
it is possible that candidates complement each other,
and work better together. It was actually shown by
Woolley et al. [22] that there is a measure for the col-
lective intelligence of a group of people that is di↵erent
from the intelligence quantities of di↵erent people in
the group. So, it seems reasonable to allow the voters
to give extra value for choosing together a pair of can-
didates that are known to work well together on, e.g.,
suggesting complex laws in the parliament. Note that
the fact that two candidates are working well together
is related to the candidates and not to the voters, and
indeed, the joint supermodular degree of the voters will
reflect the synergies between the candidates.

• Movie selection: Consider the problem of choosing k
movies to be available on an airplane (passengers can
watch on their flight movies from the selected set).
It seems reasonable that people would prefer to watch
latter parts of a series only after the former. Moreover,
it might be unreasonable to consider a series of movies
as one movie, if, e.g., physical storage is a limitation.
Then, it is plausible to give the prospective passen-
gers the possibility to give higher values for movies in
the series, given that all the former are selected, as
well. Additionally, movie selection can admit submod-
ular behaviour (i.e. substitutes). For example, since
the time of the flight is bounded, the number of movies
one can watch out of the k selected movies is bounded,
as well. This means that, if for example, k = 100 and
the time of the flight allows one passenger to watch up
to 5 movies, then any movie out of the k that is not
among the 5 best for that passenger is redundant for
her. So her value will not increase given that we add to
the selected set other great movies. On the other hand,
we do want to allow k to be large enough to allow dif-
ferent passengers to enjoy di↵erent movies. The latter
behaviour is submodular. Synergy between selected
movies is supermodular. Our model enables one to
express such preferences. Furthermore, submodularity
does not hurt the approximation guarantees, since it
does not increase the joint supermodular degree of the
preference functions (see Section 7).

6. PREFERENCE ELICITATION
Consider the movies selection example. When a prospec-

tive passenger is asked to express her preferences about pos-
sible movies, it seems unreasonable to require her to specify
her values for all the exponentially many possibilities. We
briefly demonstrate a simple user interface to elicit users’
preferences in that case, while enabling them to benefit from
the possibility of expressing positive correlations.

The user interface will be as follows. Each of the prospec-
tive passengers will be able to give a value for each of the
possible movies (these are the values of the singleton sub-
sets). In addition, the prospective passengers will be able
to add for each of the movies other values – the marginal
values of a movie, with respect to a subset of its joint su-
permodular dependency set (i.e., other movies in the same
series). In order to select such a subset of the movies, a



list of the movies in the joint supermodular dependency set
will be presented, and a passenger will be able to select the
relevant movies (e.g. by checking them by a ‘V’). In order
to enforce the preference functions of the prospective pas-
sengers to be well defined (i.e. a single value for each of the
subsets), we will let the prospective passengers check by a
’V’ only the movies that were former to a movie in a series.

Note that the supermodular dependency is symmetric (see
[10] for a proof). So, in a series of movies, also the former
movies are dependent on the latter movies. As an example,
one can think of two movies, where each of them is worth 1,
but the second one is worth 10 with respect to the first.
Then, both movies together are worth 11, and the marginal
contribution of each of them with respect to the other is 10,
instead of 1 (as it is with respect to the empty set).

Generally speaking, this example interface can be extended
in any way that enforces the preference functions to be well
defined (e.g. by ordering the items and letting the prospec-
tive passengers to check a dependency by ’V’ only if it is
before the current item in that ordering).

To see the power of combining supermodular dependencies
with submodular behaviour, note that we can also ask each
passenger how many movies she would like to watch in her
flight (with a maximum that depends on the duration of the
flight), and then calculate as her preference, the best subset
of that number of movies, from any input subset of movies.

Note that it is easy to emulate both value and supermod-
ular queries using such a representation, and then to use
the algorithms of Feldman and Izsak [11], as described in
Section 7.

7. COMPUTATIONAL RESULTS
The following theorem shows that there exists an approxi-

mation algorithm with approximation guarantee that is lin-
ear in the amount of synergy between the candidates, as
measured by the joint supermodular degree of the preference
functions of the voters. For submodular set functions, the
result described by the theorem coincides with the optimal
result for submodular set functions of Fisher, Nemhauser
and Wolsey [14] that is used by Skowron, Faliszewski and
Lang [21].

Theorem 1. When the joint supermodular degree of the
preferences functions of the voters is d, the k-committee
selection problem admits an approximation algorithm with
guarantee (1 � e�1/(d+1)) � 1/(d + 2). The algorithm gets
access to the preference functions by value queries and su-
permodular queries, and its running time is Poly(n,m, 2d).

Note that the above result captures the example of movies
selection from the introduction (see Section 5 for further dis-
cussion). Note also that the proof of the above result applies
to the case of committee selection subject to a general ma-
troid constraint (cardinality constraint is a special case of a
matroid constraint), but with an approximation guarantee
of 1/(d + 2), by using the respective algorithm of Feldman
and Izsak [11].
Moreover, one can use the algorithms of Feldman and

Izsak [12] in order to get an online (secretary like) version of
Theorem 1, when the candidates arrive one by one in an on-
line fashion, and we need to decide on the spot, irrevocably,
whether to elect a candidate or not, based on the preferences
of the voters (for exact details of the model, see [12]). As
an example, consider hiring a team to a project, where each

of the candidates meets with a few interviewers. Then, an
optimal team of candidates should be hired, according to
the preferences of the interviewers.

By using the algorithm of Feldman and Izsak [12] for a
cardinality constraint, one gets an approximation guarantee
polynomial in the joint supermodular degree. Any approxi-
mation guarantee that depends only on the joint supermod-
ular degree gives a constant approximation guarantee, if the
candidates admit synergy only with a constant number of
other candidates (e.g. if there is a positive correlation only
within series of movies, and all the series suggested are of
length up to 3). See also Oren and Lucier [18] for a di↵erent
secretary like model.

Additionally, we show a hardness result for the case of
non-bounded joint supermodular degree, even when the su-

permodular degree of all the set functions is bounded by 1.
For this, we use a reduction from the k-dense subgraph prob-
lem (see e.g. Bhaskara el al. [3]).

Definition 8. The k-dense subgraph problem is the fol-
lowing. We are given as input a graph G = (V,E) and an
integer k 2 N, and our aim is to select k vertices such that
the number of edges in their induced subgraph is maximized.

This problem is NP -hard and it is highly believed it is hard
to approximate it within any constant guarantee. Actually,
no e�cient algorithm is currently known that approximates
it within a guarantee better than nc, for some constant c
(see e.g. [3, 19, 20]).

Theorem 2. The k-commitee selection problem is at least
as hard as the k-dense subgraph problem, even if the su-
permodular degree of the set functions is 1, and even if an
explicit representation of the preference functions is given.
This means, in particular, that it is NP-hard2 and SSE-
hard (see [19] and also [20]).

Proof of Theorem 1. Let V be the set of n voters, let
C be the set of m candidates, let k be the requested number
of elected candidates and let f1, . . . , fn : 2C ! R+ be the
preference functions of the voters. We prove that since the
joint supermodular degree of f1, . . . , fn is upper bounded by
d, then the supermodular degree of their summation func-

tion f⌃(S)
def
=

P
n

i=1 fi(S) is upper bounded by d, as well.
Note that this would not be necessarily true if only the su-

permodular degree of f1, . . . , fn was bounded by d (or even
by 1). Actually, Theorem 2 serves as a counter example to
the latter for d = 1.

To prove the bound on the supermodular degree of the
summation function f⌃, we show that every supermodular
dependency by f⌃ induces the same supermodular depen-
dency by one of the f

i

s in the sum. Let c, c0 2 C and S ✓ C
be such that f⌃(c | S [ {c0}) > f⌃(c | S). Then, by the
definition of f⌃,

P
n

i=1 fi(c | S [ {c0}) >
P

n

i=1 fi(c | S). So,
91in

s.t. f
i

(c | S [ {c0}) > f
i

(c | S), as claimed.
Now, we can just use the algorithm of [11] for mono-

tone function maximization subject to uniform matroid con-
straint (i.e. cardinality constraint) on the function f⌃ with a
constraint k. Note that the latter algorithm gives an optimal
approximation guarantee for submodular set functions, and
generally its guarantee deteriorates linearly with the super-
modular degree. Moreover, its running time is as required
by the Theorem. This concludes the proof of Theorem 1.
2NP -hardness is actually true also for submodular set func-
tions, i.e. supermodular degree of 0.



Proof of Theorem 2. The proof is somewhat similar
to the proof of SSE-hardness for maximizing set function
subject to cardinality constraint, given by [11]. Given an al-
gorithm for solving the k-commitee selection problem within
approximation guarantee ↵, we show how to solve any input
instance of the k-dense subgraph problem within approxi-
mation guarantee ↵. Let G = (S,E) be an instance of the
k-dense graph problem. Then, our set of candidates C will
be S (the set of vertices of G). We also introduce a voter
v
e

for every edge e = {v
e1, ve2} 2 E and let V =

S
e2E

{v
e

}.
For every voter v

e

, her preference set function is:

f
e

=

(
1 if v

e1 and v
e2 are both elected.

0 otherwise

That is, in this instance of the k-committee selection prob-
lem, our aim is to find a subset of k candidates (where the set
of candidates corresponds exactly to the set S of vertices of
G), such that the number of pairs of candidates, that corre-
spond to the preference functions of the voters, is maximized
(where these pairs of candidates are exactly the edges E of
G). This is exactly the k-dense subgraph problem. That
is, given a solution to this instance of k-committee selec-
tion problem, we just output the subset of vertices of S that
corresponds to the candidates in C that were selected, as a
solution to the input instance of the k-dense subgraph prob-
lem. This gives us a feasible solution with the same value,
and thus with the same approximation guarantee ↵. This
concludes the proof of Theorem 2.

8. CONCLUSIONS
We suggest a new voting rule for committee selection that

enables the voters to express positive correlation between
the candidates. We also introduce the joint supermodular
degree that enables us to use existing computational results
for the supermodular degree, and get e�cient approximation
algorithms for our voting rule. We see our work as a proof
of concept, and hope that it will lead to further study of
committee selection with positive correlation between the
candidates.
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ABSTRACT
Recently, there has been increased attention on finding solu-
tions for two-sided markets with strategic buying and selling
agents. However, the known literature largely focuses on so-
lutions in settings where there exists a single commodity for
sale and agents ask/o↵er one unit of the commodity.

In this paper we present and evaluate a general solution
that matches agents in a dynamic, two-sided combinatorial
market. Multiple commodities, each with multiple units, are
bought and sold in di↵erent bundles by agents that arrive
over time.

Our solution, DYCOM, provides the first dynamic two-
sided combinatorial market that allows truthful and individually-
rational behavior for both buying and selling agents, keeps
the market budget balanced and approximates social wel-
fare e�ciency. We experimentally examine the allocative
e�ciency of DYCOM under variety of distributions of bids
and market demand. The experimental results are given
with respect to our proven theoretical bounds and with re-
spect to other known (dynamic and non-dynamic) two-sided
markets with a single commodity as well as a non-dynamic
combinatorial market. DYCOM performs well by all bench-
marks and in many cases improves on previous mechanisms.

CCS Concepts
•Information systems!Web applications; •Applied
computing ! Electronic commerce;

Keywords
Strategic agents, Electronic commerce, combinatorial ex-
changes

1. INTRODUCTION
One-sided auctions have long been studied in economics

and computer science. In particular, such auctions see use
in the multi-agent planning domain for purposes such as
task allocation [12], robot exploration [24], and resource al-
location [9]. One-sided auctions aim to find high-social wel-
fare (SWF) (an e�cient) allocation of a commodity to a set
of agents, while ensuring that a truthful reporting of the

Appears at: 4th Workshop on Exploring Beyond the Worst Case in
Computational Social Choice (EXPLORE 2017). Held as part of the Work-
shops at the 16th International Conference on Autonomous Agents and
Multiagent Systems. May 8th-9th, 2017. Sao Paulo, Brazil.

agents’ input is their best strategy. An important extension
of one-sided auctions are one-sided combinatorial auctions
where multiple commodities are o↵ered for sale. Agents bid
on bundles of commodities which allows agents to express
complex preferences over subsets of commodities (see [8] for
many examples within). An elegant and well-studied class of
combinatorial one-sided auctions are the sequential posted
price auctions in which the agents are presented sequentially
with a vector of prices and must choose their preferred bun-
dle given the price vector (among the first studied are [1,
20]). One-sided combinatorial auctions have been applied
to various problems, including airport time slot allocation
[19], distributed query optimization [23] and transportation
service procurement [22].

Recent years have brought increased attention to the prob-
lems that arise in two-sided markets, in which the set of
agents is composed of buying and selling agents. As op-
posed to one-sided auctions where the auctioneer initially
holds the commodity or the commodities and is not con-
sidered strategic, in the two-sided market the commodities
are initially held by the set of selling agents, who have costs
for the commodities they hold and are expected to behave
strategically. The market maker’s role is to match buying
agents with selling agents as well as to determine what price
each matched buying agent pays the market and what price
the market pays each selling agent.

The cornerstone method in auction theory for high-SWF
(e�cient) allocation and incentivizing agents’ truth-telling
strategy is the Vickrey-Clarke-Groves (VCG) mechanism [25,
6, 13]. In addition to motivating agents to report their true
input VCG is also individually rational (IR) in many set-
tings. IR requires that no agent can lose by participating
in the mechanism. In two-sided markets, a further impor-
tant requirement is budget-balance (BB) meaning that the
market does not end up with a loss. VCG is not BB except
in special cases [14]. It is well known from [18] that maxi-
mizing SWF while maintaining IR and truthfulness perforce
runs a deficit (is not BB) even in the bilateral trade setting,
i.e., when there are just two agents trading with each other.
Well-known circumventions of [18]’s impossibility in the set-
ting of double sided auctions with a single commodity (and
unit demand and supply) are [15, 16], which relax e�ciency
in return for maintaining the other properties of truthful-
ness, IR and BB. Other circumventions of [18]’s impossi-
bility include relaxing determinism in addition to e�ciency,
i.e., are randomized solutions some in the simple setting of
a single-commodity single-unit market [21] and some in the
extended setting of combinatorial market [3]. [7, 11, 27] cir-

1



cumvents [18] in the setting of single-commodity single-unit,
multi-commodity single-unit and single-commodity multi-
unit respectively.

The growing interest in two-sided markets is motivated
by the numerous examples of applications such as stock ex-
changes, online advertising exchanges, pollution rights and
the recent US FCC e↵ort to reallocate electromagnetic spec-
trum from UHF television broadcasting to use for wireless
broadband services. Many of these examples represent dy-
namic and uncertain environments, and thus require dy-
namic markets where agents arrive over time. Moreover,
the examples emphasize the need for solutions that involve
multiple commodities and agents that can buy and sell the
multiplicity of those commodities, i.e., two-sided combinato-
rial markets as opposed to unit demand/supply. On the one
hand due to the complex design requirements of such two-
sided combinatorial markets, practical solutions for those
dynamic environments such as the recent US incentive auc-
tions circumvent the dynamic aspect of the problem by em-
ploying an iterative process [17]. And on the other hand,
to our knowledge, the theoretical solutions of dynamic two-
sided markets in the literature focuses on a single commodity
for sale and agents ask/o↵er one unit of the commodity [4,
2].

Wurman et al. [26] presented a dynamic two-sided solu-
tion incentivizing truthful reporting from either the buyers
or the sellers but not simultaneously from both. A di↵er-
ent dynamic solution given by Blum et al. [2] maximizes the
SWF of buyers and non-selling sellers in the single commod-
ity unit demand setting. Finally, Bredin et al. [4] present
a truthful dynamic double-sided auction that is constructed
from a truthful o✏ine double-sided auction rule also in the
single commodity unit demand setting.

In this paper we present and evaluate a general solution
that dynamically matches agents in a two-sided combinato-
rial market. Multiple commodities, each with multiple units,
are bought and sold in di↵erent bundles by agents that ar-
rive over time. Our solution, DYCOM, provides the first
dynamic two-sided combinatorial market that allows truth-
ful and IR behavior for both buying and selling agents, keeps
the market BB and approximates SWF e�ciency.

The main idea behind our DYCOM solution is the trans-
formation of the two-sided combinatorial market into a one-
sided combinatorial auction. The transformation of the mar-
ket into an auction makes use of a novel principle: each sell-
ing agent is a buying agent of his own commodities. Thus
all our dynamic market’s selling agents become virtual buy-
ing agents who buy in a dynamic one-sided combinatorial
auction along with our market’s actual buying agents. DY-
COM is a primal-dual sequential posted-price mechanism
that builds upon a combinatorial auction studied in the lit-
erature [5]. However, DYCOM incorporates solutions to the
design challenges imposed by the simulation process such as
higher initial price constraints and payment computations
for virtual buying agents. Much like other sequential posted-
price mechanisms DYCOM does not require any assumption
on agents’ arrival order.

To validate the performance of our suggested solution, we
experimentally tested the SWF e�ciency of DYCOM un-
der variety of agents’ bid distributions and agents’ demand
against a number of benchmarks. Some of the benchmarks
were dynamic and some were non-dynamic. The most no-
table of DYCOM’s results were when compared with:

• An optimal non-dynamic and non-truthful allocation
algorithm (simplex), where DYCOM’s approximation
approaches 0.5 of the market SWF.

• McAfee [16]’s non-dynamic single commodity unit de-
mand market. Here DYCOM’s approximation approaches
1 though DYCOM is tailored for a completely general
combinatorial setting and it is dynamic unlike [16] and
as such it was not expected to perform as well as [16].

• [3]’s randomized non-dynamic combinatorial market.
In this comparison DYCOM’s approximation approaches
10 times that of [3]’s SWF in large markets even though
DYCOM is deterministic and dynamic unlike [3] and
as such it was not expected to perform better than [3].

The paper’s contributions are threefold. First, we pro-
vide the first dynamic two-sided combinatorial market that
is truthful, IR and BB for all agents that approximates
SWF e�ciency. Second, our experimental tests show that
our dynamic two-sided combinatorial market is a general
and practical platform as it performs as well as the known
McAfee [16]’s non-dynamic single-commodity unit-demand
two-sided market and performs better than the randomized
non-dynamic combinatorial market with limited valuations
and cost domains [3]. Third, our two-sided combinatorial
market transformation into a one-sided combinatorial auc-
tion is of independent interest for future work on simplifying
other forms of multi-sided exchanges to the well studied form
of one-sided auctions.

2. PRELIMINARIES
Consider a dynamic market model in which agents arrive

over time. Agents are either buyers or sellers interested in
trading multiple units of multiple commodities in bundles.
Commodities are sold by selling agents and allocated to buy-
ing agents irrevocably.

Let m be the total number of non-identical commodities
o↵ered by all selling agents accumulatively. Each commodity
j 2 {1, . . . ,m} has a

j

identical units (or copies). Though
in our model selling agents arrive dynamically we assume
that a

j

is a priori known to the market. The assumption
that the number of a commodity’s units is a priori known to
the market was made by almost all previous literature on dy-
namic markets see ([2, 7, 26])1. There are practical examples
where the quantity of commodities expected in the market is
a priori known to the market maker. For instance consider
a securities Exchange with no short sells. The number of
shares of each stock issued by its company is pre-known to
the exchange yet buyers and sellers arrive dynamically. An-
other example where the quantity of commodities expected
in the market is pre-known, though without dynamic ar-
rivals of buyers and sellers, are the newly run FCC incentive
auctions where the broadcast frequencies are pre-known to
the government.

A bundle of commodities, s, is defined as vector (d
s,1

...d
s,m

),
where 0  d

s,j

 a
j

is the number of units of commodity j in
the bundle. We say that s  s0 if the vector of s is at most
the vector of s0 coordinate-wise. There are l agents who
are interested in selling commodities. Each selling agent t
has a bundle of commodities S

t

= (d
S

t

,1

...d
S

t

,m

) he initially

1except for the work by [4] which assumed an alternative
assumption of agents bounded patience.
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owns and a cost function c
t

that assigns a non-negative cost
for each bundle s

t

 S
t

of commodities, c
t

: {0...S
t

1

} ⇥
... ⇥ {0...S

t

m

} ! R+ and any other bundle is assigned
zero. We denote by c a vector of declared costs c

1

, ..., c
l

and by c�t

a vector of declared costs c
1

, ..., c
t�1

, c
t+1

, ..., c
l

.
There are n agents who are interested in buying commodi-
ties. Each buying agent i has a valuation function v

i

that
assigns a non-negative value for each bundle of commodi-
ties, v

i

: {0...a
1

} ⇥ ... ⇥ {0...a
m

} ! R+. We denote by v a
vector of declared valuations v

1

, ..., v
n

and by v�i

a vector
of declared valuations v

1

, ..., v
i�1

, v
i+1

, ..., v
n

. For simplicity
of notations we denote v

i

(s) by v
i,s

and c
t

(s) by c
t,s

. We
assume the standard assumption in combinatorial auctions
literature that commodities can be perishable and the valua-
tion function is monotonic non-decreasing. That is, for each
buying agent i and s  s0, v

i,s

 v
i,s

0 and for each selling
agent t and s  s0, c

t,s

 c
t,s

0 . Also, for any i, v
i

(;) = 0
and for any t, c

t

(;) = 0 (normalization).
Bundle s is denoted as feasible bundle for buying agent

i (selling agent t) if there is no bundle s0  s, v
i,s

0 = v
i,s

(c
t,s

0 = c
i,s

). Intuitively, bundles that are not feasible con-
tain commodities that are perishable. Let S(i) (S(t)) be the
set of feasible bundles for buying agent i (selling agent t).
We assume that there are known bounds
1 < ⇥  min{i,j, s

i

2S(i),s

t

2S(t)}

n

a

j

d

s

t

,j

,
a

j

d

s

i

,j

o

and

✓ � max{i,j, s

i

2S(i),s

t

2S(t)}

n

a

j

d

s

t

,j

,
a

j

d

s

i

,j

o

. That is, for each

bundle s
i

2 S(i) and s
t

2 S(t) and commodity j, the num-
ber of commodities j in the bundle, d

s

i

,j

(d
s

t

,j

), is at least
1/✓ and at most 1/⇥ fraction of the total number of com-
modities j, a

j

. The ✓,⇥ demand bounds are parameters in
our SWF approximation ratio, as will be shown in section
3. The SWF approximation ratio improves as the agents’
demand decreases relative to the supply of commodities in
the market. Intuitively the e↵ect of the above parameters
can be understood as improving the algorithm’s performance
when each participant represents a bounded share of the de-
mand in the market. Accordingly, the algorithm performs
better for large markets than thin markets as will be seen in
section 4. This characteristic makes the algorithm practical
and desirable for use in large markets.

Our agents are assumed to have a demand (supply) or-
acle representation of their valuations (costs) (a common
assumption in the combinatorial auction literature e.g. [10]
for valuation oracle).

Definition 2.1. (demand (supply) oracle) For every buy-
ing agent i (selling agent t), a demand oracle for valuation

(cost) v (c) accepts a vector of commodity prices (p(1)
i

...p(m)

i

)
as input and outputs the demand for (supply of) the com-
modities at these prices, i.e. it outputs the vector (d

s,1

, ..., d
s,m

),
s 2 S(i) (s 2 S(t)) that maximizes i’s utility max

s,s2S(i)

v
i,s

�
P

m

j=1

d
s,j

p(j)
i

(t’s utility max
s,s2S(t)

P

m

j=1

d
s,j

p(j)
t

� c
t,s

).

In a concrete market implementation the valuations (costs)
will be given in some “bidding language” and our market
will operate in polynomial time as long as the bidding lan-
guage allows polynomial-time computation of answers to de-
mand (supply) oracle queries. Note that these types of oracle
queries can be easily answered for the case where each agent
puts forward an arbitrary list of mutually exclusive bids for
packages.

Let A =
P

m

j=1

a
j

be the total number of commodities.
Let s

max

= max
i,t,(s2S(i)^s2S(t))

{
P

m

j=1

d
s,j

} be the largest

bundle requested (o↵ered) in the market, note that, s
max


A and that we do not assume that s

max

is pre-known.
An allocation for a two-sided market can be represented

as a pair of vectors (X,Y ) = ((X
1

, ..., X
n

), (Y
1

, ..., Y
l

)) such
that the sum of the union of X

1

, ..., X
n

, Y
1

, ...Y
l

is A, and
X

1

, ...X
n

, Y
1

, ..., Y
l

are mutually non-intersecting. The goal
of the market maker is to dynamically match the agents
such that each buying agent i interested in buying a bundle
is allocated with available commodities of selling agents t, so
as to maximize

P

n

i=1

v
i

(X
i

)+
P

l

t=1

c
t

([s 2 S(t) \Y
t

). This
goal is referred to as SWF or e�ciency (of trading buyers
and remaining commodities).

We transform the two-sided combinatorial market into a
one-sided combinatorial auction where selling agents are re-
duced to virtual buying agents of their own o↵ered commodi-
ties. The one-sided combinatorial auction used to host the
two-sided combinatorial market is inspired by [5]’s primal
dual combinatorial auction. The goal of the auctioneer in
the one-sided combinatorial auction is to partition the avail-
able commodities by allocating each buying agent i a bundle
s
i

, so as to maximize
P

n

i=1

v
i

(s
i

). This goal is referred to
as maximizing SWF (or e�ciency).

We say that a mechanism is truthful if reporting the true
value and cost is a dominant strategy for each agent regard-
less of the other agents’ reports.

We say that a mechanism is individually rational (IR) if
no agent can receive a negative utility by participating.

We say that a market is budget balanced (BB) if the sum
of the prices paid by the buying agents is at least as high as
the sum of the prices paid to the selling agents.

2.1 The one-sided combinatorial auction for-
mulation as a linear programming prob-
lem

Our proposed one-sided combinatorial mechanism is based
on solving a linear relaxation of the problem in a dynamic
fashion. Let us first introduce an integer formulation for the
one-sided combinatorial mechanism problem.

Let y
i,s

2 {0, 1} be a variable indicating that bundle s
is allocated to buying agent i. Constraint (1) suggests that
each buying agent is allocated at most one bundle. Con-
straint (2) suggests that the number of units sold from com-
modity j is at most a

j

.
We relax the integrality constraints y

i,s

2 {0, 1} in order
to achieve the below linear program formulation that upper
bounds the maximum SWF.

[Dual] max
P

n

i=1

P

s2S(i)

v
i,s

y
i,s

P

s2S(i)

y
i,s

 181  i  n (1)

1

a

j

P

n

i=1

P

s2S(i)

d
s,j

y
i,s

 181  j  m (2)

y
i,s

� 081  i  n, s 2 S(i)

Note that the number of variables may be exponential.
However, our algorithm never solves this linear formulation
explicitly. We refer to this formulation as the dual pro-
gram [Dual]. To obtain the corresponding primal program
[Primal], we define variable z

i

for each buying agent i, and
variable x

j

for each commodity j. The primal linear formu-
lation is as follows.
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[Primal] min
P

n

i=1

z
i

+
P

m

j=1

x
j

z
i

+
P

m

j=1

d

s,j

a

j

x
j

� v
i,s

81  i  n, s 2 S(i) (3)

z
i

, x
j

� 081  i  n, 1  j  m

Note that the dual problem described above is not the
integer formulation of the traditional combinatorial auction
problem but rather a linear programming formulation that
upper bounds the maximum social welfare and is never solved
explicitly by the solution we present in the paper. Our so-
lution solves the primal problem presented and therefore it
is presented as primal.

3. DYCOM AND THE SIMULATION OF
TWO-SIDED COMBINATORIAL MARKET
AS A ONE-SIDED

In this section we first discuss how to transform a two-
sided combinatorial market into a one-sided combinatorial
auction such that one can conclude the allocation and prices
of the buying agents as well as the allocation of the selling
agents and the payments they receive. We then present DY-
COM and prove its economic properties and approximation.

Consider a dynamic market in which agents arrive over
time and prices increase with demand (we make the common
assumption in online mechanism design literature that the
order of arrival is arbitrary and agents have no control over
it. This assumption can also be found in [1], [5] and many
citations within.). Agents are either buyers or sellers which
arrive once and are faced with a vector of prices. Agents can
demand/supply a bundle of their choice in the given prices
immediately or leave permanently. Selling agents that sup-
ply a bundle stay at the market until their supply is sold (or
return to them in market closing time). For every arriving
agent t which is interested in selling bundles of commodities
S(t) and initially owns commodities S

t

, we construct a vir-
tual agent i that is interested in buying some of selling agent
t’s commodities. In order to simulate a virtual buying agent
i that represents selling agent t’s interests we need to allow
virtual agent i to buy the commodities that are not beneficial
for selling agent t to sell. For example if selling agent t has
one unit of commodity 1 and one unit of commodity 2, his
cost function is c

t,{1} = 10, c
t,{2} = 5, c

t,{1,2} = 14 and he is

presented with prices p(1)
t

= 8, p(2)
t

= 7 then he is not inter-
ested in selling commodity 1. Therefore the virtual buying
agent that represents him will buy commodity 1. Since all
that we have access to is the agent’s demand(supply) oracle,
in order to simulate selling agent t as a buying agent of t’s
commodities we query each selling agent t’s supply oracle as
he arrives and allocate the created virtual buying agent with
the commodities S

t

\ s
t

where s
t

is the bundle answered by
t’s supply oracle. Selling agent t’s commodities that were
not bought by its virtual buying agent are o↵ered to the
“regular” (non virtual) buying agents that arrive in the time
periods that follow.

We assume a priori knowledge of the values v
max

and
c
min

such that v
max

� max
i,s

{v
i,s

}, c
min

 min
t,s

{c
t,s

} and
v
max

> c
min

. It is easy to verify that v
max

and c
min

knowl-
edge is necessary in order to obtain non-trivial approxima-
tion ratio. First we consider the a priori knowledge of v

max

.
If v

max

is unknown to the algorithm, then any determin-
istic algorithm has an unbounded e�ciency approximation

ratio even if there is only a single commodity (with multiple
units). To see this, consider selling agents with cost zero for
all commodities and consider the following simple adversar-
ial sequence. In each iteration the next buying agent would
like a single unit of the (single) commodity and his bid is the
smallest value of the remaining buying agents that still need
to arrive. If there is no such value then certainly the algo-
rithm has no bounded e�ciency. Otherwise, the algorithm
always allocates all units, and after allocating all units then,
the next buying agent has value that is very large compared
to all previous bids. Similar argument can be made for the
necessity of c

min

.
As the assumption of a priori knowledge of v

max

and c
min

is necessary in order to obtain a non-trivial approximation
all previous literature on dynamic markets even ones with
single commodity assume similar a priori knowledge of the
max, min values (see [2, 7, 26]). The only previous work on
dynamic markets that does not assume a similar assumption
to the max, min values, is the work by [4]. However [4]’s
work assumes an alternative assumption: agents bounded
patience, that without it no reasonable e�ciency can be
achieved.

Let si
max

= max
s|y

i,s

=1

{
P

m

j=1

d
s,j

} be the maximal size
of any bundle allocated by DYCOM until agent i’s arrival

(including i) and let  =
ln(1+s

i

max

(v

max

�c

min

))

1�1/⇥

.

DYCOM is composed of initialization stage (the first two
for loops) and a running loop that handles dynamically ar-
riving agents. The loop for the arriving agents has 5 steps.

• Step (1) update the prices of all commodities for the
new agent that arrived.

• Step (2) query the arriving agent for his demand or
supply (depending on the type of agent) of commodi-
ties given the current prices.

• Step (3) handle selling agents by converting each ar-
riving selling agent in to a virtual buying agent. The
virtual buying agent is configured to buy the commodi-
ties that the selling agent is better o↵ keeping and not
selling given the current market prices, i.e., his total
commodities bundle S

i

minus the bundle of commodi-
ties that are most beneficial for him to sell according to
his supply oracle s

i

. Payment to the arriving agent is
made every time his commodities are bought by future
arriving buying agents. The payments are computed
according to the prices that were presented to the sell-
ing agent at his arrival2.

• Step (4) handle buying agents by allocating each ar-
riving buying agent his requested bundle at current
prices and charging him according to those prices. In
this step DYCOM pays selling agents for commodi-
ties that were bought by the currently arriving buying
agent.

2Note that the IR property is not a↵ected by the later pay-
ments since if units of commodities in s

i

are not sold in the
market by its closing time then those units can be returned
to seller i. Also note that similarly to [4] we could have
changed our algorithm to pay the arriving selling agents in-
stantaneously and have the market “hold” the commodities
until bought, however such approach will lead to market
deficits during the market run as occurs in [4]’s market.
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• Step (5) updates the parameters given the new allo-
cation and in particular updates the primal parameter
xi

j

for the next arriving agent’s prices. The update
formula, xi+1

j

, is motivated by the idea that no com-
modity j is allocated more than a

j

times. This can be
achieved by increasing the price of every commodity j
such that after the allocation of at least (1 � 1/⇥)a

j

units of the commodity the price reaches the level of
v
max

. At this high price no agent can a↵ord to buy the
commodity. Meaning, no more units of the commod-
ity will be sold after the price reaches v

max

. As each
allocation of a commodity to an agent is at most 1/⇥
of the commodity, no more than a

j

allocations of the
commodity can occur in total.

DYCOM

For each commodity j set x1

j

= c
min

a
j

, , s1
max

= 0

For each buying and selling agent 1  i  n+ l
set z

i

= 0, y
i,s

= 0

For each arriving agent i = 1...n+ l

(1)for each commodity j set the price p(j)
i

= xi

j

/a
j

(2)input current prices p(1)
i

...p(m)

i

to agent i’s
demand/supply oracle and
output demand/supply bundle d

s,1

...d
s,m

, s
i

2 S(i)
(3)if i is a selling agent then construct a

virtual buying agent i by:
allocating him the bundle s = S

i

\ s
i

paying him the future payment determine at (4)
query i on c

i,s

, set v
i,s

= c
i,s

(4)if i is a buying agent
allocate i with bundle s = s

i

charge i p
i

=
P

m

j=1

d
s,j

p(j)
i

query i on v
i,s

for k = 1...i� 1
for every unit of commodity j

of virtual buying agent (i� k)
that is allocated to agent i in d

s,j

,

pay agent (i� k) the price p(j)
i�k

(5)Update:
y
i,s

= 1, z
i

= v
i,s

, recompute si
max

for all j: xi+1

j

 xi

j

exp
⇣

d

s,j

y

i,s

a

j

 
⌘

+a
j

⇣

1

s

i

max

� c
min

⌘⇣

exp
⇣

d

s,j

y

i,s

a

j

 
⌘

� 1
⌘

3.1 Analysis
In this section we analyze the performance of the DYCOM

solution as a truthful, IR, BB and SWF maximizing market.
Our analysis first shows that the market is truthful and IR
both for buying and selling agents and does not run a deficit.
Then we focus on the analysis of the SWF approximation
ratio.

Lemma 3.1. DYCOM is truthful and IR for buying and
selling agents and is a BB market.

Proof. We start by claiming that DYCOM is truthful.
Since agents have no control over their arrival order they can
not a↵ect the commodities prices they are faced with. Never-
theless agents can potentially misreport their demand/supply
bundle or can misreport its value/cost. We first claim the

buying agents are weakly better o↵ reporting their true de-
mand bundle and their true value for it. Assume for the
contrary that a buying agent requested a bundle s0 that is
not the bundle s that was recommended to him by his de-
mand oracle. As the demand oracle outputs the bundle that
maximizes the agent’s utility given the price vector, when
allocated s0, the agent can not gain a higher utility than
s. Thus the buying agent is (weakly) better o↵ reporting
his true demand bundle. Any declaration of s’s value can
not change the allocation (and therefore can not change the
buying agent’s utility) as the allocation is determined by the
bundle demand. Moreover buying agent’s lie will be imme-
diately exposed if he reports the value of s such that it is
less than the total price of the bundle s as his demand oracle
is utility maximizing.

We continue by claiming that the selling agents are weakly
better o↵ by reporting their true supply bundle and their
true cost for the bundle. Assume to the contrary that a
selling agent t requested a bundle s0 that is not the bundle
s that was recommended to him by his supply oracle. First
assume the case that there exists a unit of commodity j
that is in s however it is not in s0. That means that the
unit of commodity j will be allocated to the virtual buying
agent constructed of selling agent t and t will not be paid
for it. However we know that given the prices presented to
t and his supply oracle, his utility will increase if we will
not keep the unit of commodity j and will get paid for it,
in its presented price. Thus t is better of requesting bundle
s. Now assume that there exists a unit of commodity j that
is in s0 however it is not in s. That means that the unit
of commodity j will not be allocated to the virtual buying
agent constructed of selling agent t and t will be paid for
it. However since selling agent t’s supply oracle is utility
maximizing, we know that t’s utility will increase (or at
lease will not decrease) by not selling the unit of commodity
j and not get paid for it. Thus the selling agent is (weakly)
better o↵ reporting his true supply bundle. Any declaration
of s’s cost can not change the allocation (and therefore can
not change the selling agent’s utility) as the allocation is
determined by the supply of bundles. Moreover, a selling
agent’s lie will be immediately exposed if he reports the cost
of s such that it is more than the total price of the bundle s
as his supply oracle is utility maximizing.

We continue by claiming that DYCOM is IR. For buy-
ing agents DYCOM is IR since a buying agent only pays
for units of commodities he is allocated and his payment is
computed based on the commodities price vector presented
to him. As each buying agent’s demand oracle is utility
maximizing no allocation will result in a negative utility for
a buying agent. For selling agents DYCOM is IR since a
selling agent only gets paid for units of commodities that
his virtual buying agent is not allocated (which is exactly
his supply bundle) and the mechanism’s payment to him is
computed based on the commodities price vector presented
to him. As each selling agent’s supply oracle is utility max-
imizing no sell will result in a negative utility for a selling
agent.

Now we claim that DYCOM does not run a deficit, i.e.,
DYCOM is BB. Since selling agents get paid according to the
commodities prices that are presented when they arrive and
buying agents pay according to the current prices they see,
and since prices are non-decreasing between arrival times,
every buying agent payment on every unit of a commodity
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will be at least as high as the payment for its selling agent.

We continue by analyzing the SWF approximation ratio.

Lemma 3.2. DYCOM approximates the SWF of the trad-
ing buying agent and the remaining commodities with in

O(⇥[(1 + s
max

(v
max

� c
min

))
1

⇥�1 � 1] + ✓).

Before we present the proof of our approximation claim we
like to compare DYCOM’s approximation ratio with that of
the other known combinatorial two sided market by [3]. [3]’s
approximation for the SWF of the trading buying agent and
the remaining commodities in a randomized mechanism and
if all valuations and costs are subadditive3 is 8H

s

max

where
H

s

max

is the s
max

harmonic number. Their mechanism as-
sumes distributional knowledge of the median value of each
selling agent’s ⇥, ✓ bounds. Figure 1 shows that for large
markets DYCOM achieves better theoretical approximation
ration than [3] even though [3]’s solution is randomized non-
dynamic and the approximation ration is only guaranteed
for the cases where valuations and costs are subadditive and
not generated for the general case as ours4.

Proof. In order to show DYCOM’s SWF of the trading
buying agent and the remaining commodities’ approxima-
tion ratio, it is enough to show the SWF approximation
ratio for buying and virtual buying trading agents as the
last ones are allocated the remaining commodities.

Let �Primal be the change in the value of the primal so-
lution and let �Dual be the change in the value of the dual
solution. After each agent’s arrival DYCOM updates a pri-
mal solution [Primal] and a dual solution [Dual]. In order
to show the approximation ratio we need to prove that (i)
the primal solution produced by DYCOM is feasible. (ii) the
dual solution output by DYCOM is feasible. (iii) after each
agent arrival, �Primal is at most w times �Dual, where w
would have been our desired approximation ratio if both the
primal and dual solutions were initially 0. In that case we
would have achieved an approximation of at least 1/w times
the feasible primal solution we produce. Since our primal so-
lution is not initially 0 but

P

m

j=1

c
min

a
j

, we need to reduce
� =

P

m

j=1

c
min

a
j

from [Primal] and we conclude that our

approximation is at least 1

w+

�

[Dual]

times the feasible primal

solution we produce. The lemma’s claim follows directly by
weak duality.

Primal feasibility: It is easy to verify that the primal so-
lution produced by DYCOM satisfies all primal constraints.
We omit the details due to space limitations.

Primal-Dual relation: We need to show the relations of
�Primal and �Dual created by the arrival of agent i. De-

note �x
j

= xi+1

j

� xi

j

. Let q =
⇣

exp
⇣

d

s,j

a

j

 
⌘

� 1
⌘

and let

3Subadditive - roughly speaking, the value of bundle A plus
the value of bundle B is greater than the value of their union.
4Figure 1 shows its finding under subadditive valuations and
costs. When we generate data removing this assumption
DYCOM gives even better theoretical guarantees for the
presented large markets. This graph was omitted due to
page limitations

Figure 1: DYCOM’s theoretical SWF approxima-
tion ratio under di↵erent bounds of agents’ de-
mand/supply level with respect to the overall supply
of commodities in the market vs. Blumrosen and
Dobzinski 2014 theoretical SWF approximation ra-
tio. When demand/supply of each agent is bounded
by at least 1/400 of total market units DYCOM’s
theoretical SWF approximation ratio is better than
Blumrosen and Dobzinski 2014.

q0 =
�

exp
�

 

⇥

�

� 1
�

for the ease of presentation.

� Primal = z
i

+
m

X

j=1

�x
j

= v
i,s

+
m

X

j=1



x
j

✓

exp

✓

d
s,j

a
j

 

◆

� 1

◆

+

✓

a
j

si
max

� a
j

c
min

◆

q

�

= v
i,s

+
m

X

j=1

✓

x
j

· ds,j
a
j

+
d
s,j

si
max

� d
s,j

c
min

◆

· a
j

d
s,j

q

 v
i,s

+
m

X

j=1

✓

x
j

· ds,j
a
j

+
d
s,j

si
max

� d
s,j

c
min

◆

·⇥q0 (4)

 v
i,s

+ (v
i,s

+ 1� c
min

) ·⇥q0 (5)

 v
i,s

+ (v
i,s

+ 1) ·⇥q0 (6)


�

1 + 2⇥q0
�

�Dual (7)

Inequality (4) follows as for every x, � 1 x(e
 

x �1) is mono-

tonic decreasing. Inequality (5) follows as
P

m

j=1

d

s,j

s

i

max

 1

(si
max

is the size of the maximal bundle allocated until cur-

rent agent’s arrival) and as
P

m

j=1

d
s,j

x

j

a

j

=
P

m

j=1

d
s,j

p(j)
i


v
i,s

. Also, since the minimal size allocated bundle is a single
unit of one item type then

P

m

j=1

d
s,j

� 1. Inequality (6)
follows since c

min

> 0. Finally, Inequality (7) follows since
�Dual = v

i,s

. Note that si
max

and  are non-decreasing
throughout the agents’ arrivals. Last but not least is bound-
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ing from above �/[Dual].

�
[Dual]

=

P

m

j=1

c
min

a
j

P

n

i=1

v
i,s

y
i,s


P

m

j=1

c
min

a
j

v
i,s


P

m

j=1

xi

j

v
i,s

(8)



P

m

j=1

⇣

xi

j

d

s,j

a

j

⌘

· a

j

d

s,j

v
i,s



P

m

j=1

xi

j

d

s,j

a

j

· ✓
v
i,s

 ✓ (9)

Inequality (9) follows since
P

m

j=1

xi

j

d

s,j

a

j

 v
i,s

.

Substituting  and si
max

we achieve the approximation ra-
tio of:
1+2⇥q0+✓  1+2⇥

⇣

exp
⇣

ln(1+s

max

(v

max

�c

min

))

⇥�1

⌘

� 1
⌘

+✓ =

O(⇥[(1 + s
max

(v
max

� c
min

))
1

⇥�1 � 1] + ✓). Dual feasibility:
DYCOM’s solution is the solution produced by the dual so-
lution. In order to prove dual feasibility we need to show
that no agent is allocated more than a single bundle and
that no commodity j is allocated more than a

j

times. Since
each arriving agent is asked to declare a bundle of interest
through a demand oracle and the demand oracle outputs a
single bundle as an out come, the single bundle constraint
is satisfied. In order to prove the commodity constraint we
prove that for every commodity j the price reaches the level
of v

max

after the allocation of at least (1 � 1/⇥)a
j

units
of the commodity. At the resulting high price no agent
can a↵ord to buy the commodity any more. Meaning, no
more units of the commodity will be sold after the price
reached the v

max

level . As each allocation of a commod-
ity for an agent is at most 1/⇥ of the commodity, no more
than a

j

allocations of the commodity can occur in total. We
look for a price expression such that when agent g arrives
1

a

j

P

g�1

i=1

P

s2S(i)

d
s,j

y
i,s

� 1 � 1/⇥, then the price is at

least v
max

. We show that the price computed by DYCOM
is such. We prove by induction that the price of one unit of
commodity j at the arrival time of agent g is as follows:

Let Q =
ln(1+s

g

max

(v

max

�c

min

))

(1�1/⇥)a

j

for the ease of presentation

and let sg
max

is the maximal bundle allocated by DYCA up
to the arrival of agent g.

p(j)
g

=
xg

j

a
j

�

1

s

g

max

0

@exp

0

@Q ·
g�1

X

i=1

X

s2S(i)

d
s,j

y
i,s

1

A� 1

1

A+ c
min

(10)

We omit the details of the induction proof due to space
limitations.

4. EXPERIMENTAL RESULTS
We conduct an empirical evaluation of our suggested solu-

tion’s performance against a range of known market bench-
marks. We compare the allocative SWF e�ciency of buying
agents and unallocated commodities of DYCOM with the
known non-dynamic single commodity unit-demand solution

by [16] (Figure 2) and the dynamic single-commodity unit-
demand solution by [2] (Figure 5)5. We also compare the
allocative SWF e�ciency DYCOM’s buying agents and un-
allocated commodities with [3]’s randomized non-dynamic
combinatorial market. (Figure 6)6. Our experimental re-
sults show that though DYCOM is dynamic, combinatorial
and more general it can perform in practice as well as the
above known solutions that were tailored for limited mar-
ket settings and perform even better for some of the above
known solutions for large markets. While [2]’s solution’s per-
formance mainly depends on the size of the valuation/cost
range in the market (which may be large in an electronic
global market), our DYCOM solution performs best on large
markets where no buying or selling agents control a large
portion of the demand or supply (See Figure 5). As was seen
in Subsection 3.1 Figure 1 DYCOM theoretically performs
better than [3] in large markets where the agents’ values
and costs are taken over a large spread and each agent’s de-
mand/supply is bounded by at least 1/400 of total market
units. Interestingly the performance gap improves favor-
ably towards DYCOM in the practical comparison. Figure
6 shows that even if each agent’s demand/supply is bounded
by at least 1/200 of total market units, DYCOM performs
better. Figure 6 shows its finding under subadditive val-
uations and costs. When we generate date removing this
assumption DYCOM performs even better with respect to
[3] under the same size market’s demand/supply bounds.
The graph was omitted due to page limitations.

All results presented were averaged over 1000 trials. The
comparisons with [16, 2] were performed on a market with
800 units of a commodity. In all the experiments we found
minimal to no qualitative di↵erences between the use of dif-
ferent distributions. We also compared DYCOM’s practical
performance with that of the theoretical results for multi-
ple commodities (Figure 3 and Figure 4) and found that in
practice DYCOM’s SWF approximation ratio is improved
by an order of magnitude and converges to half the SWF of
an optimal non-dynamic combinatorial solution (simplex).
We note that the theoretical approximation ratio proven in
Subsection 3.1 converges to 0.06 in the runs we performed
(Figure 4).

5. CONCLUSION AND DISCUSSION
In this paper we present and evaluate DYCOM the first

dynamic two-sided combinatorial market that allows truthful
and IR behavior for both buying and selling agents, keeps
the market BB and approximates SWF e�ciency. DYCOM
is a general solution that dynamically matches agents that
arrive over time in a two-sided combinatorial market with
multiple commodities of multiple units.

The main idea behind our DYCOM solution is a trans-
formation of the two-sided combinatorial market into a one-
sided combinatorial auction. The transformation of the mar-
ket into an auction makes use of a novel principle that each
selling agent is a buying agent of his own commodities. DY-
COM is a primal-dual sequential posted-price mechanism

5We omitted the comparison of DYCOM with [4]’s solution
as they conclude that their Chain mechanism performs es-
sentially the same as [2]’s mechanism in practice.
6the comparison is done such that all valuations and costs
are subadditive as [3] assumes such valuations and costs as
part of their approximation ratio bound.
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Figure 2: McAfee 2008’s SWF vs. DYCOM’s SWF.
DYCOM seems to converge to an identical SWF ap-
proximation ration as McAfee as the valuation and
cost range grows.

and its economic properties as well as its approximation
guarantee are theoretically proven.

To validate the performance of our DYCOM solution,
we experimentally tested the SWF e�ciency of DYCOM
under variety of agents’ bid distributions and agents’ de-
mand against a number of benchmarks. Our experimental
tests show that DYCOM is a general and practical platform
as 1) it performs as well as the known McAfee [16]’s non
dynamic single-commodity unit-demand two-sided market
though DYCOM is tailored for a completely general com-
binatorial setting and it is dynamic unlike [16] and 2) it’s
approximation approaches 10 times that of [3]’s market’s
SWF in large markets though DYCOM is deterministic and
dynamic unlike [3] which is randomized and non dynamic.

In addition to providing a practical solution to the impor-
tant problem of a dynamic two-sided combinatorial market,
we believe that our two-sided combinatorial market trans-
formation into a one-sided combinatorial auction is of inde-
pendent interest for future work on reducing other forms of
multi-sided exchanges to the well studied form of one-sided
auctions.
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Proxy Voting for Revealing Ground Truth
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ABSTRACT
We consider a social choice problem where only a small subset of
voters actually votes. The outcome of a vote with low participa-
tion rate could be far from the outcome reached by a vote with full
participation. A possible solution to a vote with low participation
rate is allowing voting by proxies. Proxy voting is a scenario which
enables the voters that do not vote to transfer their voting rights to
another voter.

In some voting settings voters try to discover or agree upon some
ground truth while each voter gets a noisy signal about that truth
[1, 7]. From this viewpoint, different voting scenarios can be com-
pared upon the expected distance of the aggregated outcome from
the truth. By comparing voting with and without proxies, we try to
define the conditions under which proxy voting helps to get closer
to the truth. A specific model of proxy voting was suggested and
studied in [4]. In this paper we apply this model to the case where
a ground truth exists. We analyze datasets of social choice and
multiple-choice questions and show that Proxy voting can be ben-
eficial in order to find an outcome that is closer to the ground truth.
When the participation rate is low enough, proxy voting is always
beneficial. In some instances, proxy voting can even get closer to
the truth than a vote with full participation. This is a bit surprising
since proxy voting uses strictly less information than full participa-
tion vote.

1. INTRODUCTION
In the model of proxy voting suggested by [4], it is shown that in

various domains, allowing proxy voting results in an outcome that
is closer to the aggregated opinion of the entire population. This
means that proxy voting improves the social outcome when the out-
come reached by the whole population is assumed to be good. In
contrast to [4], where it is assumed that the aggregated vote of the
entire population is optimal, in this paper we consider voting pro-
files that are derived from some ground truth. Thus the criterion for
successful voting mechanisms is finding an outcome that is close to
this ground truth. This paper compares proxy voting to full partic-
ipation vote and to partial participation vote, and categorizes the
conditions for which proxy voting is beneficial i.e. it results in an
outcome that is closer to the ground truth according to some natural
metric.

For example, when votes are orders (permutations) over a set, a
natural metric is the Kendall tau distance. We use this distance to

Appears at: 4th Workshop on Exploring Beyond the Worst Case in Com-
putational Social Choice (EXPLORE 2017). Held as part of the Workshops
at the 16th International Conference on Autonomous Agents and Multia-
gent Systems. May 8th-9th, 2017. Sao Paulo, Brazil.

assign proxies (i.e., an inactive voter will relegate her voting rights
to the voter with nearest vote). Then we aggregate votes to a sin-
gle order using some standard social welfare function (voting rule),
where only active voters participate, and are weighted by their num-
ber of followers. Finally, we measure the Kendall tau distance from
the aggregated outcome and the ground truth.

1.1 Contribution
We apply the proxy voting model from [4] both to synthetic

datasets generated from Mallow’s distribution model with a given
ground truth order, and to empirical datasets in two natural do-
mains. The first is from a crowd sourcing experiment where sub-
jects were requested to order four items according to their correct
order [6], and the second is from Pisa standard tests take by Israeli
students.

We show that for all voting rules we tried and for every sample
size, it is beneficial to allow inactive voters to use proxies, in the
sense that the aggregated vote becomes closer to the ground truth
on expectation. For some datasets, proxy voting can be even better
than a full participation vote.

We analyze the reasons for this improvement by looking at the
distribution of proxies’ weights, and suggest a preliminary theoret-
ical result that explains why better proxies get higher weights.

2. PRELIMINARIES
We follow the model and the definitions of [4] as described be-

low.

Domains.

X is the space, or set of possible votes, or voter types. Consider
some finite set of alternatives A = {a1, . . . , al}. In this paper we
will consider two Domains:

1. multiple discrete issues X = A

k with the Hamming distance

2. ordinal preferences X = ⇧(A) with the Kendall tau dis-
tance.

distances.

The Hamming distance between two agents’ positions v1, v2 is
the number of issues on which the agents disagree on. For example,
the Hamming distance between v1 = (1, 5, 0, 0), v2 = (2, 1, 0, 1)
is 3 since the agents’ positions are different in issues j = 1, 2, 4.

The Kendall tau distance between two ranking is the number of
pairwise disagreements between them. Kendall tau distance is also
called bubble-sort distance since it is equivalent to the number of
swaps that the bubble sort algorithm would make to place one list
in the same order as the other list. For example, the Kendall tau
distance between (a,b,c,d) and (b,c,a,d) is 2, since two swaps are



needed in order to get from the first ranking to the second. Note that
Hamming distance between agents’ positions equals the Kendall
tau distance between their ranking.

Ground Truth and profiles.

The Truth T 2 X is a particular point in space (either an m-size
vector in domain (1), or an order over alternatives in domain (2)).
The model does not assume a priori any dependence between the
truth and the voting profiles.

SN is the voting profile of the set of voters N of size n. The
interesting cases are when society have some idea about the truth,
that is to say, there is some dependency between SN and the truth
T .

Mechanisms.

A mechanism g : Xn ! X (also called a voting rule) is a func-
tion that maps any profile (set of positions) to a winning position.

For the binary issues we will focus on a simple Majority mech-

anism that aggregates each issue independently according to the
majority of votes. That is, (mj(S))(j) = 1 if |{i : s(j)i = 1}| >
|{i : s(j)i = 0}| and 0 otherwise, where s

(j) is the j’th entry of
position vector s. For example, say that the number of voters n is
7, for any issue j the outcome of the mj mechanism will be ‘1’ if
at least 4 of the voters vote ‘1’, else the outcome will be ‘0’. In all
mechanisms we break ties uniformly at random.

For the ordinal preferences we use pairwise majority (mj) in
addition to four different voting rules: Kemeny, Borda, Plurality
and Veto which are denoted respectively by km,bo,pl and vt.
In order to aggregate pairwise majority, ordinal votes are converted
into issues by checking for each pair of alternatives (↵,�) whether
↵ is preferred over �. For example assume votes are a strict ranking
of 4 alternatives, then a conversion into issues will result in

�
4
2

�
=

6 discrete binary issues. On each issue a majority voting rule is
resolute.

All the voting rules (mechanisms) that we use naturally extend to
weighted finite populations, by considering voting with wi copies
of voter i

Scenarios.

We label the ’everyone vote’ scenario as E, the basic scenario as
B and the proxy scenario as P . In scenario E, all voters votes and
the result is g(SN ). In scenario B, only the subset of active voters
M ✓ N votes, while inactive voters abstain. The result is g(SM ).
In scenario P , active voters vote, while each unavailable voter grant
her voting right to an active voter. Given a set M of active agents,
the decisions of inactive voters are specified by a mapping JM :
X ! M , where JM (x) 2 M is the proxy of any voter located at
x 2 X . Thus the results in scenario P is g(SM ,wM ), where for
each j 2 M , wj = |{i 2 N : J(si) = j}|, i.e. the weight of
proxy j is the number of inactive voters who select proxy j, plus
himself.

Without further constraints, we will assume that the proxy of a
voter at x is always its nearest active agent, i.e. the agent whose
position (or vote) are most similar to x. Thus for every subset of
active agents M , we get a partition of X . We can compute accord-
ing to the metric we choose the weight of each active agent j. This
is done by summing the number of inactive agent that j is their
closest active agent. Formally, JM (x) = argminj2M kx� sjk
and wj = |{i 2 N : J(si) = j}|. For example, voter i0 is at lo-
cation xi0 and is following the closest active voter to her, which is
JM (xi0) = argminj2M kxi0 � sjk = j

0, the weight of proxy j

0 is
increased by one. If there are several proxies at the same distance,
voter i selects one of them at random.

To recap, an instance is defined by a profile SN and a truth T .
Each instance produce an outcome according to the scenario Q 2
{E,B, P}, mechanism g2{km,bo,pl,vt,mj}, and the sample
size |M | = m.

Evaluation.

We want to measure how close is g

Q(SN ) to the truth T . We
define the error as the distance between g

Q(SN ) and the truth.
Note that the Kendall tau distance is the Hamming distance over the
induced binary vectors of pairwise preferences (where each pair of
alternatives in A induces a binary issue). Thus the distance between
any two votes s, s0 2 X can be written as ks� s

0k (since these are
binary vectors it does not matter which norm is used). In particular,
the error of g on SN in scenario Q is kgQ(SN )� Tk.

The loss of a mechanism g is calculated according to its mean
square error (MSE)—the expected squared distance from the truth—
over all samples of m available voters.

LQ(T, SN ,m) = EM⇠U [Nm]

h
kgQ(SN )� Tk2

i
, (1)

where the mechanism g can be inferred from the context, and the
expectation is over all subsets of m positions sampled uniformly
without repetitions from SN (sometimes omitted from the sub-
script).

3. SIMULATIONS
The experiments were designed to test two hypothesis:

1. LP
< LB for every voting rule. That is, whether for random

samples of a given size m, proxy voting always yields an
outcome which is closer to the truth than an outcome yield
by unweighted vote with the same set of proxies.

2. there is some setting where LP
< LE . That is, under certain

parameters, taking a sample of active voters and use them
as proxies will yield an outcome which is closer to the truth
than the outcome reached by aggregating all votes.

3.1 Datasets

3.1.1 Generative model of votes

We generate synthetic profiles, by sampling rankings from Mal-
low’s model. Mallow’s distribution model is a distance-base rank-
ing model, which is parametrized by a true order T and a disper-
sion parameter � 2 (0, 1]. For any ranking r 2 ⇧(A), the Mallows
model specifies:

Pr(r) = Pr(r|T,�) = 1
Z

�

d(r,T )

Where d is the Kendall tau distance and Z =
P

r02! �

d(r0,T ) is
a normalization constant. When � = 1 the distribution is uniform
over all permutations (very noisy), when � ⌧ 1 almost all the
mass is concentrated at T (small amount of noise). Using synthetic
datasets helps understanding the role of each parameter while fixing
the others. Mallow’s distribution model is one of the two most
popular noise models in the machine learning community together
with Plackett-Luce [5].

3.1.2 Natural experiments

We used two ranking datasets made by [6] using crowd-sourcing.
One is referred to as the dots dataset. In that test voters were
shown four pictures with dots and were asked to ranked the pic-
tures by the number of dots from least to most. The number of



Figure 1: L{E,B,P}, under generative model of preference, us-
ing five voting rules. Note that for Mallow’s model with low
dispersion LE

< LP
< LB . For Mallow’s model with high

dispersion � = 0.95, (high mistakes probability) LP
< LE .

dots in the pictures were {200, 200 + i, 200 + 2i, 200 + 3i} for
i = {3, 5, 7, 9}. The data contain at each level of noise, i, 40
preference profiles. Each profile contain about 20 voters. This test
has been suggested as a benchmark task for human computation
in [2]. In the second dataset, refereed as the sliding puzzle, vot-
ers had four situations of a size 8 sliding puzzle, and they had to
order those puzzles by the minimal number of moves left to solve
them. The number of minimal moves were {d, d+3, d+6, d+9},
for d = {5, 7, 9, 11}. Again, 40 preference profiles, each contain-
ing 20 voters, were gathered. Those dataset were valuable for us
since they contain a true order. A comprehensive explanation on
how the data was gathered in the two experimental datasets can
be found at [6]. Another dataset that we examined is the results
of a test called the program for international student Assessment
(PISA). This test evaluate education systems worldwide by testing
the skills and knowledge of 15-year-old students. We where look-
ing for a dataset of multi choice questions (without missing data),
thus we included only the students who answered all of the first 18
multiple choice questions. This data match the first domain (multi-
ple discrete issues). Our dataset contain n = 571 student (voters),
answering k = 18 questions (issues), each question has 4 possible
answers.

3.1.3 Method

The simulation start by creating a profile of votes, either by sam-
pling from Mallow’s model or by loading the empirical datasets.
Then, a ranking profile of active voters was simulated for each
scenario: The E scenario used the original profile with N vot-
ers. The B scenario sample uniformly at random, a given size
m < n of active voters while the other abstained. In P scenario M

were active voters while each of the other voters N \ M becomes
a clone of her closest agent in M . Thirdly an aggregated order
was calculated for each scenario using five popular voting rules:
{km,bo,pl,vt,mj}. Lastly, for each voting rule, we compared
the Kendall tau distances (Hamming distance for Pairwise major-
ity) from the truth T to the order obtained by each scenario.

Figure 2: L{E,B,P}, for puzzle and dots datasets, using five vot-
ing rules. Proxy voting is doing better than random sample, i.e.
LE

< LP
< LB .

3.2 Results
Our simulations on the generative model shows that LP (g) <

LB(g) for all five voting rules g, in all datasets, and for almost
every sample size m (Figs. 1, 2 and 5). Same results are obtain
analyzing the Pisa dataset (Fig. 9) with the Majority voting rule (In
this dataset the domain is multiple discrete issues, thus the voting
rule is majority.) This results supports our conjecture that proxy
voting reveals ground truth better than a random sample, and often
considerably better.

The big difference in the settings from [4] is that when there is
some hidden ground truth, the outcome gathered from full partici-
pation vote (scenario E) is not necessary optimal. On some votes
the best active voter get much closer than the aggregated decision
of the entire population, thus there is hope that with the appropri-
ate weights, proxy voting can do better than E. Indeed for some
datasets proxy voting is even better than a full participation vote,
e.g., Mallow’s model with 4 alternatives, 20 voters and � = 0.95
(Fig. 1). This is also true for about half the crowd-sourcing datasets
(Fig.3). This is an interesting phenomenon since proxy voting uses
strictly less information than a full participation vote. In future
work we will try to characterize the conditions for that to happen.
For now we only found some rules of thumb:

• Amount of noise should be high enough in order to make
the E scenario do pretty bad. If ordering is too easy, E will
have almost no loss, thus no scenario can do better, this is the
situation in [4] where the outcome reached by scenario E is
the optimal one.

• There should be high variance in the individual performance
of voters. If all voters have roughly the same accuracy then
proxy voting does not help much.

3.3 Analysis
Denote by Ri = ksi � Tk the distance of voter i from the truth.

The reason that proxy voting gets closer to the truth than a random
sample lies in the weight distribution of the proxies. While in sce-
nario B the weights are uniform by definition, at scenario P the
weights are roughly decreasing in their ratio of mistakes Ri, that is



Figure 3: LE vs. LP , examining the 40 dots datasets (noise level
i=3), under Borda voting rule and m = 10 proxies. Markers
under the 45 degree line are datasets where P is closer to the
ground truth than E. A small random noise was added to LE

in order to better visualize close outcomes.

Figure 4: LE vs. LP shown for the 40 datasets of d = 11 puzzle.

to say, better proxies get more voting weight. When dispersion is
low, the distribution of the weights is monotonic decreasing in Ri.
When dispersion raises, some of the voting weight moves towered
the worst proxy, resulting a single dip distribution, with peaks at
the best and worst proxies, see Fig 7.

4. EXPLAINING PROXY WEIGHTS
In the previous section, we observed empirically that better prox-

ies (i.e. ones closer to the ground truth T ) tend to get more follow-
ers and thus higher weight. We are interested in a theoretical model
that explains this. One such result was given in [4] for the limit
case of k ! 1 binary issues, where essentially all inactive voters
select either the best or the worst proxy, according to which one is
closer. However, in realistic scenarios (including our datasets), the
number of issues is much smaller.

We model a simplified version of the problem, where there is
one follower which is requested to choose a proxy from two active
voters. A priori, we only know the distribution of votes, and we

Figure 5: The expected error in scenarios {E,B, P}. Using
Borda voting rule. Examining d = 11 puzzle dataset . LP < LE

for a subset of active voters M large enough.

Figure 6: P is decreasing faster than B and better approximat-
ing E.

want to estimate the probability that the follower would choose the
better proxy.

Following [4], we model each agent with a fixed error probability
Pi. Consider two active agents with error probabilities Pi < Pj <

0.5, and an inactive agent with error probability Z < 0.5. W.l.o.g.
T = 0. Thus si, sj and z are random binary vectors of length k,
whose entries are ‘1’ with respective probabilities of Pi, Pj , and Z.

Fix the values of the best proxy Pi = P , an inactive agent Z,
and the number of issues k. Denote by ✏ = Pj � Pi > 0 the dif-
ference in the quality of proxy j from the best proxy. We want to
understand better how the probability of selecting the worse proxy
Pj behaves as ✏ and k vary. Note that this probability is taken
in expectation over all realizations of si, sj , z, as in each such re-
alization the decision of the inactive voter is deterministic (up to
tie-breaking).

[4] showed that z is more likely to be closer to si, and that the
probability of being closer to j drops exponentially with the num-
ber of issues k. Let qi = Pr(s(t)i 6= z

(t)) = Pi(1 � Z) + (1 �



Figure 7: Weight per proxy, ordered by the ratio of wrong an-
swers Ri in increasing order. The dots dataset.

Figure 8: Weight per proxy, ordered by the ratio of wrong an-
swers Ri in increasing order. Mallow’s model with 4 alterna-
tives, 20 voters, and dispersion parameter � = 0.95 .

Pi)Z = Pi + Z � 2PiZ. Indeed, they showed

Pr(kz � sik > kz � sjk) ⇠= �

 p
k(qj � qi)p

qi(1� qj) + qj(1� qi)

!
,

where �(x) = PrX⇠N(0,1)(X > x), and the approximation is
due to the Binomial-to-Normal approximation.

Note that qj � qi = Pj + Z � 2PjZ � (Pi + Z � 2PiZ) =
(Pj � Pi)(1� 2Z) = ✏(1� 2Z). Thus

Pr(kz � sik > kz � sjk) ⇠= �

 p
k(qj � qi)p

qi(1� qj) + qj(1� qi)

!

= �

0

BB@

p
k(1� 2Z)✏r

(P + Z � 2PZ)(1� (P + ✏+ Z � 2(P + ✏)Z))
+ (P + ✏+ Z � 2(P + ✏)Z)(1� (P + Z � 2PZ))

1

CCA

Figure 9: The expected error in scenarios {E,B, P}. Examin-
ing the Pisa dataset. The expected error of E is 3, meaning that
the aggregated majority vote made 3 mistakes out of 18 ques-
tions. The expected error for both scenarios B,P is roughly
decreasing in the number of active voters m but is substantially
lower for P .

= �

0

BB@

p
k(1� 2Z)✏r

(4Z2 � 8PZ

2 + 8PZ � 4Z + 2P + 1)✏
+ 2Z(1� Z) + 2P (1� P )� 8PZ(1� P )(1� Z)

1

CCA

= �

✓
C1✏p

C2✏+ C3

◆
= �

�
⇥(

p
✏)
�
= exp(�⇥(✏)).

For some constants C1 > 0, C2 > 0, C3

That is, the probability that j is selected decreases exponentially
fast in the distance between the error rate of j and that of the best
proxy. The drop is exponential when the distance is large enough
and there are enough issues. Another observation is that if we
fix ✏ < P < 0.5 and Z approaches 0.5 (i.e. an ignorant inactive
agent), then the term in brackets approaches 0. In other words,
ignorant agents spread their weight roughly evenly over all active
voters, whereas smart agents are substantially more likely to give
their vote to a good active voter.

This supports the intuitive argument from [3] regarding the “Anna
Karenina principle” (as good agents are indeed similar to one an-
other), and thus at least partially explains the weight distribution of
active agents. To see if this is a sufficient explanation, one needs to
compare the actual weight distribution, and specifically wj

w1
, to the

expression above.
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ABSTRACT
We consider committee scoring rules (a family of multiwin-
ner voting rules) and define a class of cooperative games
based on elections held according to these rules. We show
that there is a polynomial-time algorithm for computing the
Banzhaf value for a large subclass of these games and we
show, using this Banzhaf value, an appealing heuristic algo-
rithm for computing winning committees. We evaluate this
algorithm experimentally for the case of the Chamberlin-
Courant voting rule.

CCS Concepts
•Computing methodologies ! Multi-agent systems;

Cooperation and coordination;

Keywords
committee scoring rules, approximation algorithms, Banzhaf
value, greedy algorithms, winner determination

1. INTRODUCTION
The goal of a multiwinner election is to choose a subset

(a committee) of presented items (candidates) based on the
preferences of a group of agents (the voters). Committee
elections are a natural model for various tasks [12], rang-
ing from shortlisting [4], through numerous business appli-
cations [13,19,20,27], to tasks involving proportional repre-
sentation, such as parliamentary elections [1, 6].

In consequence, there is a great number of very diverse
multiwinner voting rules, based on many di↵erent princi-
ples. For example, Kilgour [18] discusses various approval-
based rules (see also the work of Aziz et al. [2] for a more
computational persective), Gehrlein [16] and Ratli↵ [25] dis-
cuss elections in the ordinal model that are based on the
Condorcet principle1, and many rules can be seen as ex-

1In single-winner voting, a candidate is a Condorcet winner
if he or she is preferred to every other candidate by a ma-
jority of the voters (albeit, possibly a di↵erent majority in
each case).

Appears at: 4th Workshop on Exploring Beyond the Worst Case in
Computational Social Choice (EXPLORE 2017). Held as part of the Work-
shops at the 16th International Conference on Autonomous Agents and
Multiagent Systems. May 8th-9th, 2017. Sao Paulo, Brazil.

tensions of single-winner scoring rules (e.g., the Bloc rule,
the k-Borda rule [9], or the Chamberlin–Courant [8] and
Monroe [22] rules). Elkind et al. [12] recently provided the
formalism of committee scoring rules that captures many of
the rules from this last group.

In this paper, we focus on the family of committee scoring
rules (with a particular focus on decomposable committee
scoring rules rules [13] in the theoretical part of the paper,
and on the Chamberlin–Courant rule2, in the experimental
part). We show that committee scoring rules can be used
to define a class of cooperative games, consider the Banzhaf
value of this game, and show that it leads to improved ap-
proximation algorithms for our rules.

Committee Scoring Rules. We consider elections where
the voters express preferences over the candidates by rank-
ing them from the most to the least desired ones (we refer to
such preference orders as votes), and where the goal is to se-
lect a group of candidates, i.e., a committee, of a given size k.
A single-winner scoring function associates each position in
a preference order with a score. For example, the Borda
scoring function for m candidates, �

m

, associates value m�i
with position i (so the top ranked candidate has Borda score
m�1, the next one m�2, and so on). A committee scoring
function associates a position of a committee in a prefer-
ence order (i.e., a sequence of the positions of the committee
members, sorted in the increasing order) with a numerical
score, and the score of a committee in an election is the
sum of the scores it receives from all the voters. For exam-
ple, the k-Borda rule uses the committee scoring function
that sums up the Borda scores of the committee members
(within a vote), whereas the Chamberlin–Courant rule uses
a scoring function under which the score of a committee (in
a given vote) is the Borda score of the top-ranked commit-
tee member (referred to as the representative of this voter
in the committee). In consequence, the k-Borda rule tends
to select very similar candidates, whereas the Chamberlin–
Courant rule tries to select a very diverse committee [11].

Cooperative Games for Committee Scoring Rules. Multi-
winner elections and committee scoring rules define a certain
natural class of cooperative games. Let us consider an elec-
tion E (with candidate set C and voter collection V ) and
some committee scoring rule R

f

with underlying committee

2Naturally, we intend to extend these results, but for the
current—preliminary report of our work—in the experimen-
tal evaluation we limit ourselves to this rule only.



scoring function f (see the preliminaries for exact formal
definitions).

We define a cooperative game G(E,R
f

), where the can-
didates are the players and the value of a coalition S is the
score assigned by f to committee S. Given such a game,
we can use the full set of tools developed within cooper-
ative game theory to analyze properties of the underlying
election; here, in particular, we consider the Banzhaf val-
ues of the candidates, where the Banzhaf value of a player
i in a cooperative game is its average marginal contribution
to the value of a coalition, where the coalitions are chosen
uniformly at random from the set of all possible coalitions
that do not include i. Intuitively, the Banzhaf value of a
candidate (a player) in our game measures the importance
of this candidate. There are, however, two issues to resolve.
First, the definition of Banzhaf value requires us to consider
all coalitions, while in committee elections the size of the
committee is usually constrained. Second, we may already
know some committee members (see below) and the defini-
tion of the Banzhaf value does not account for this. Thus,
we consider a variant of the Banzhaf value where we measure
the average marginal contribution of a player to a randomly
chosen coalition that (a) contains some given preselected
players, and (b) is of a required size.

We show that our generalized variant of the Banzhaf
value is polynomial-time computable for a large class
of committee scoring rules (including the Chamberlin–
Courant rule, but also several more involved rules).

Application of the Banzhaf Value. Unfortunately, many
committee scoring rules are NP-hard to compute [5, 19, 24,
27]. One way to deal with this problem is to use approx-
imation algorithms, the first of which was proposed by Lu
and Boutilier [19] for the case of the Chamberlin–Courant
rule. This algorithm, which is a natural incarnation of the
celebrated greedy approximation algorithm for maximizing
submodular functions of Nemhauser et al. [23], achieves ap-
proximation ratio of (1 � 1

e

). Indeed, the algorithm was
shown to be applicable to a very large subclass of commit-
tee scoring rules [13] (and to date it is the only general algo-
rithm that applies to a wide class of committee scoring rules
and provides guarantees regarding the output quality).

The greedy algorithm proceeds as follows. We start with
an empty committee and in a sequence of k iterations (where
k is the number of candidates that we want to select) we keep
adding to the committee those candidates that increase its
score by the largest value. While this algorithm seems to be
achieving very good results in practice (see the works of Lu
and Boutilier [19] and Skowron et al. [28] for some experi-
mental results), it also has some drawbacks. For example,
if it is used to select an approximate Chamberlin–Courant
committee, then in the first iteration it always selects the
candidate with the highest individual Borda score (i.e., the
so-called Borda winner), even though in many cases this
candidate does not belong to the optimal committee. While
it is clear that an approximation algorithm does not always
choose the optimal committee, always selecting the Borda
winner creates a huge systematic bias against some candi-
dates that might otherwise be selected (this e↵ect is illus-
trated in the full version of the work of Elkind et al. [11]).
This bias is a strong argument against using the algorithm.

We modify the greedy algorithm so that instead of
choosing the candidate that increases the score of the
committee the most, it chooses the candidate with the
highest Banzhaf value (for a given committee size and
the candidates already selected in previous iterations).

We evaluate our algorithm experimentally for the case
of the Chamberlin–Courant rule. In our experiments, the
Banzhaf-based algorithm essentially always outperforms the
original greedy algorithm, and often outperforms the algo-
rithm of Skowron et al. [28] that underlies their polynomial-
time approximation scheme (PTAS) for the Chamberlin–
Courant rule (we use a variant of the algorithm improved
by Elkind et al. [11]; see the full version of their paper).

Our approach is partially inspired by the line of work re-
garding the use of the Shapley value to extend centrality
notions for networks (see the work of Michalak et al. [21] as
a representative paper). We also model our problem (finding
a good, approximate committee) using the language of co-
operative game theory and use its tools to obtain improved
results.

Organization of the Paper. In Section 2, we provide nec-
essary background regarding elections, committee scoring
rules, and cooperative games. Then, in Section 3, we discuss
the Banzhaf value for the games we define as well as algo-
rithms for computing it. In Section 4, we present the greedy
algorithm based on the Banzhaf value, and in Section 5 we
evaluate it experimentally for the Chamberlin–Courant rule.
We discuss further research directions in Section 6.

2. PRELIMINARIES
In this section we present necessary background regarding

elections and cooperative games. For a positive integer t, we
write [t] to denote the set {1, . . . , t}. For a logical expression
⇤, by [⇤] we mean 1 if ⇤ is true and 0 otherwise.

2.1 Multiwinner Elections
An election is a pair E = (C, V ), where C = {c

1

, . . . , c
m

}
is the set of candidates and V = (v

1

, . . . , v
n

) is a collection
of voters. Each voter v is associated with a preference or-
der �

v

, i.e., with a ranking of the candidates from C (from
best to worst). A single-winner voting rule is a function
that, given an election, outputs a set of tied winners.3 In
multiwinner elections we are interested in choosing whole
committees of candidates of a given size k. A multiwinner
voting ruleR is a function that, given an election E = (C, V )
and a positive integer k, k  |C|, returns a family of size-k
committees that tie as winners. Before we discuss commit-
tee scoring rules, used for multiwinner elections, we discuss
single-winner scoring rules, on which they are based.

Single-Winner Scoring Rules. Let E be an election withm
candidates. For a candidate c and a voter v, we write pos

v

(c)
to denote the position of c in v’s preference order. A single-
winner scoring function �

m

for m candidates, �
m

: [m]! R,
is a non-increasing function that associates each possible po-
sition in a vote with a score. For example, �

m

(i) = m � i
is the Borda scoring function; for each positive integer t,
↵
t

(i) = [i  t] is the t-Approval scoring function. Typically,
3In practice, it is necessary to have some tie-breaking
scheme. We disregard this issue for convenience.



we consider families of scoring functions, e.g., � = (�
m

)
m2N,

with one function for each number of candidates. For such
a family �, the �-score of candidate c in election E = (C, V )
is �-score

E

(c) =
P

v2V

�|C|(pos
v

(c)). For each scoring func-
tion �, we have a single-winner scoring rule, denoted by R

�

,
which is defined as the voting rule which outputs the candi-
dates with the highest �-score.

Committee Scoring Rules. Elkind et al. [12] generalize
the idea of single-winner scoring functions to the commit-
tee setting. Consider an election E with m candidates
and a given committee size k. We define the position of
a committee S (i.e., of a size-k set of candidates) in some
vote v to be the increasing sequence resulting from sort-
ing the set {pos

v

(c) | c 2 S}. We write [m]
k

to denote
the set of all length-k increasing sequences of numbers from
[m]. For two committee positions I = (i

1

, . . . , i
k

) and
J = (j

1

, . . . , j
k

), I, J 2 [m]
k

, we say that I dominates J
if i

1

 j
1

, . . . , i
k

 j
k

.
A committee scoring function f

m,k

for m candidates and
committee size k, f

m,k

: [m]
k

! R, is a function that asso-
ciates each committee position with a score in such a way
that if some committee position I dominates some commit-
tee position J , then it holds that f

m,k

(I) � f
m,k

(J).

Definition 1 (Elkind et al. [12]). Let f =
(f

m,k

)
km

be a family of committee scoring functions.
The committee scoring rule R

f

is a multiwinner rule that,
given an election E = (C, V ) and a committee size k,
outputs those committees S that maximize the value:

f-score
E

(S) =
X

v2V

f|C|,k
�
pos

v

(S)
�
.

To distinguish single-winner scoring functions and com-
mittee scoring functions, we use Greek letters to denote the
former and Latin letters to denote the latter.

Examples of Committee Scoring Rules. It turns out that
the family of committee scoring rules is quite rich [13];
specifically, a number of well-known multiwinner voting
rules are, in fact, committee scoring rules. For example,
the k-Borda rule (which outputs committees of k candidates
with the highest Borda scores) is the committee scoring rule
defined via the following scoring function:

fk-Borda

m,k

(i
1

, . . . , i
k

) = �
m

(i
1

) + · · ·+ �
m

(i
k

).

The SNTV and the Bloc rules are defined analogously,
where, instead of the Borda scoring function, the former
uses 1-Approval (known as the Plurality scoring function)
while the latter uses the k-Approval scoring function. Com-
mittee scoring rules of this form are known as weakly sepa-
rable. Identifying a winning committee under a weakly sep-
arable rule can be done in polynomial time (provided the
underlying single-winner scoring functions are polynomial-
time computable), since one can compute the corresponding
score of each candidate independently from the others.

The Chamberlin–Courant rule (�-CC) is the committee
scoring rule defined by scoring functions of the following
form:

f�-CC

m,k

(i
1

, . . . , i
k

) = �
m

(i
1

).

Intuitively, under the Chamberlin–Courant rule, each voter
is assigned a representative (the committee member that he
or she ranks the highest, among all the selected committee

members) and each voter increases the score of the commit-
tee by exactly the Borda score of his or her representative.
The committees with the highest scores tie as co-winners.
Elkind et al. [12] argue that this rule is useful where we
aim to find a diverse committee in which each voter is well
represented (but where each committee member can repre-
sent di↵erent numbers of voters). The Chamberlin–Courant
rule is computationally hard [19, 24] but there are good pa-
rameterized algorithms for it [5] as well as approximation
algorithms and heuristics [15,28].

Our final example of a committee scoring rule is the ↵
k

-
PAV rule, which is a variant of the proportional approval vot-
ing (PAV) rule, adapted to the format of committee scoring
rules. It uses scoring functions of the following form:

f↵k-PAV

m,k

(i
1

, . . . , i
k

) =
kX

t=1

1/t · ↵
k

(i
t

).

Aziz et al. [1], Elkind et al. [11], Sánchez-Fernández et al. [26]
and Brill et al. [6] provide strong evidence that the ↵

j

-PAV
rule is a very good choice if the goal is to elect a committee
that represents voters proportionally. Winner determina-
tion for this rule is computationally hard, but there exists
an approximation algorithm [27] and parameterized algo-
rithms [14].

Decomposable Committee Scoring Rules. Throughout this
paper we are mostly interested in decomposable committee
scoring rules [13]. A committee scoring rule is decomposable
if it can be defined through committee scoring functions of
the following form:

f
m,k

(i
1

, . . . , i
k

) = �(1)

m,k

(i
1

) + · · ·+ �(k)

m,k

(i
k

),

where � = (�(t)

m,k

)
1tkm

is a vector of single-winner scor-
ing functions. All the committee scoring rules mentioned
above are decomposable committee scoring rules; indeed, the
subclass of decomposable committee scoring rules is quite a
profound subclass of all committee scoring rules [13].

2.2 Cooperative Games
A cooperative game G = (N, ⌫) consists of a set of play-

ers N = {1, . . . , n} and a characteristic function ⌫ : 2N ! R
such that ⌫(;) = 0. Intuitively, for each coalition N 0 of play-
ers (N 0 ✓ N), ⌫(N 0) is the joint payo↵ that the players in N 0

receive for working together. We refer to subsets of players
as coalitions. Throughout this paper we consider monotone
games only, i.e., games where for each two coalitions N 0 and
N 00 such that N 0 ✓ N 00, it holds that ⌫(N 0)  ⌫(N 00).

There are many solution concepts in cooperative game
theory that describe which coalitions may form and/or how
to distribute the coalitions’ payo↵s among their members
(see, e.g., the overview of Chalkiadakis et al. [7] for a
computer science perspective on the theory of cooperative
games). Among the solution concepts, we focus on the
Banzhaf value [3, 10], as the basic notion which turns out
to be useful in our context.

Definition 2. Let G = (N, ⌫) be a cooperative game.
The Banzhaf value of player i 2 N is defined as follows:

B
G

(i) =
1

2|N�{i}|

X

S✓N�{i}

�
⌫(S [ {i})� ⌫(S)

�
.



In other words, the Banzhaf value of player i is its
marginal contribution to a randomly selected coalition. In-
tuitively, we can view it as the player’s importance: the
higher the Banzhaf value, the more useful the player is for
a (random) coalition.

3. COMMITTEE SCORING RULES
AND BANZHAF VALUES

One of the contributions of this paper is in the following
connection between multiwinner elections (committee scor-
ing rules in particular) and cooperative games (Banzhaf val-
ues in particular). Next, we define a class of cooperative
games associated with multiwinner elections and committee
scoring rules.

Definition 3. Let E = (C, V ) be an election with C =
(c

1

, . . . , c
m

) and let R
f

be a committee scoring rule defined
through scoring functions f = (f

m,k

)
km

. We define the
game G(E,R

f

) = (C, ⌫), associated with an election E and
an election rule R so that for each coalition S of candidates
(players) we have:

⌫(S) =

(
f-score

E

(S) , if S 6= ;,
0 , otherwise.

The above definition requires some explanations and com-
ments. First, the most important aspect of this definition is
that the candidates are the players. The payo↵ of a coali-
tion S is simply the score that this coalition—interpreted
as a committee—would obtain in the underlying election.
Thus, we use the terms committee and coalition interchange-
ably, depending on the context. Second, the characteristic
function encompasses the committee scoring functions for all
committee sizes between 1 and m. While it may seem some-
what strange at first, we view it as a natural approach (for
the cases where we want to focus on particular election sizes
only, we simply limit ourselves to coalitions of this size).

3.1 Computing Banzhaf Values
Let us consider the Banzhaf value of the game G associ-

ated with election E = (C, V ), where C = {c
1

, . . . , c
m

} and
V = (v

1

, . . . , v
n

), and with the committee scoring rule R
f

,
where f = (f

m,k

)
km

. Intuitively, the Banzhaf value of a
candidate measures the importance of this candidate in the
given election.
Our first goal is to show that, for decomposable commit-

tee scoring rules, computing the Banzhaf values of all can-
didates can be done in polynomial-time. Our polynomial-
time algorithm builds on the following two observations: (1)
the Banzhaf value of a candidate can be computed for each
voter separately (this follows since committee scoring rules
treat each voter separately), and (2) the Banzhaf value of a
candidate with respect to a given voter depends only on the
position of this candidate (and on the positions of committee
members already fixed to be present; see below); this follows
since committee scoring rules depend only on the positions
of the committee members within each voter’s preference
order.
Before we formally describe our polynomial time algo-

rithm, we need some definitions and observations. Later
we will need a variant of the Banzhaf value that considers
committees of a given size only, such that some committee
members are fixed, so we define the following variant of the

Banzhaf value. We let k be a committee size, c
i

be the can-
didate we are interested in, and W be a coalition of size
smaller than k (which does not include c

i

):

B
G

(c
i

, k,W ) =
X

S✓C:W✓S,|S|=k�1

⌫(S [ {c
i

})� ⌫(S).

Note that:

B
G

(c
i

) =
1

2m�1

mX

k=1

B
G

(c
i

, k, ;),

so it su�ces to focus on computing the values B(c
i

, k,W ).
Next we show observation (1), which says that instead of

considering the whole election E, it su�ces to focus on each
vote separately. We write G(v

j

) to denote the game G where
the voter set is restricted to v

j

only. Specifically, for each
candidate c

i

it holds that:

B
G

(c
i

, k,W ) =
nX

j=1

B
G(vj)

(c
i

, k,W ).

Corresponding to observation (2), now we prove the follow-
ing technical lemma.

Lemma 1. Let f = (f
m,k

)
km

be a family of decompos-
able committee scoring rules (defined through polynomial-
time computable single-winner scoring functions), let E =
(C, V ) be an election, let k be the committee size, and let
G = (R

f

, E) be the game associated with R
f

and E. Then,
for each voter v in V , each candidate c 2 C, and each
set W such that W ✓ C � {c} and |W | < k, the value
B

G(v)

(c, k,W ) can be computed in polynomial time.

Proof. We set m = |C|. Let �(1)

m,k

, . . . , �(t)

m,k

be the
polynomial-time computable single-winner scoring functions
such that:

f
m,k

(i
1

, . . . , i
k

) = �(1)

m,k

(i
1

) + · · ·+ �(k)

m,k

(i
k

).

Let us rename the candidate set to C =
{a

1

, . . . , a
x

, c, b
1

, . . . , b
y

}, such that voter v has the
following preference order:

v : a
1

� · · · � a
x

� c � b
1

� · · · � b
y

.

Then, we partition W into two sets, W
A

and W
B

, such that
v ranks all the candidates in W

A

before c and all the can-
didates in W

B

after c. Let ⌫ be the characteristic function
associated with our game G(v). Our goal is to compute the
following quantity:

B
G(v)

(c, k,W ) =
X

S✓C : W✓S,|S|=k�1

⌫(S [ {c})� ⌫(S). (1)

To this end, for each candidate d 2 C � {c} and each
integer t 2 [k], we write C(d, t) to denote the set of coalitions
S such that: (a) W ✓ S; (b) |S| = k � 1; (c) d 2 S; and (d)
voter v ranks d as his or her t’th most desirable member of
S. We define r(d) to be 0 if v ranks d ahead of c and define
it to be 1 otherwise. Further, we define:

�(d) =
kX

t=1

X

S2C(d,t)

�
�(t)

m,k

(pos
v

(d))� �(t+r(d))

m,k�1

(pos
v

(d))
�

=
kX

t=1

|C(d, t)| ·
�
�(t)

m,k

(pos
v

(d))� �(t+r(d))

m,k�1

(pos
v

(d))
�
.



Intuitively, �(d) is the contribution of candidate d to the
sum in Equation (1).

We define �(c) in a similar (but not identical) way. That
is, for each t 2 [k], we let C(c, t) be the set of coalitions S
such that W ⇢ S, |S| = k � 1 and voter v ranks c as his or
her t’th-best among the candidates in S [ {c}. Further, we
set:

�(c) =
kX

t=1

X

S2C(c,t)

�(t)

m,k

(pos
v

(c))

=
kX

t=1

|C(c, t)| · �(t)

m,k

(pos
v

(c)).

As in the case of �(d), �(c) is the contribution of c to the
sum in Equation (1). We conclude the following:

B
G(v)

(c, k,W ) = �(c) +
X

d2C�{c}

�(d).

To complete the proof, it su�ces to note that, for each
candidate e 2 C and each t 2 [k], the value |C(e, t)| can be
computed in polynomial time. For example, for t > |W

A

|
we have the following:

|C(c, t)| =
 
pos

v

(c)� 1� |W
A

|
t� 1� |W

A

|

!
·
 
m� pos

v

(c)� |W
B

|
t� k � |W

B

|

!
.

The idea behind the formula above is as follows. For c to be
ranked on the t’th position among the candidates in S[{c},
S has to contain exactly t�1 candidates that v ranks ahead
of c. S has to contain all members of W so it contains the
|W

A

| members of W ranked ahead of t, and it su�ces to
add the missing t�1� |W

A

| in an arbitrary way (altogether
there are pos

v

(c)� 1� |W
A

| candidates that do not belong
to W and that v ranks ahead of c). We calculate the number
of ways in which we can choose members of S that v ranks
after c analogously.

By our preceding reasoning, Lemma 1 immediately implies
the following.

Theorem 2. For each decomposable committee scoring
rule R

f

defined through polynomial-time computable single-
winner scoring functions, there is a polynomial-time algo-
rithm that computes the Banzhaf value for each candidate in
a given election.

We conclude this section with the following important
remark. Let R

f

be some committee scoring rule and let
E = (C, V ) be an election. Notice that, for each candidate
c 2 C and each voter v 2 V , the Banzhaf value of c in the
game G(R

f

, v) depends only on the position of c in v. This
means that we can define a single-winner scoring rule � (for
|C| candidates) so that �(i) is the Banzhaf value of the can-
didate ranked on the i’th position among the |C| candidates
in an election with a single vote. Then, the Banzhaf value
of candidate c in the game G(R

f

, E) is simply the �-score
of c in election E.

In particular, the above remark implies that forming a
committee by choosing k candidates in the order of their
decreasing Banzhaf values (with respect to some initial com-
mittee scoring rule) means simply using a weakly separable
committee scoring rule (albeit, based on a fairly complicated
single-winner scoring function).

Another consequence of the above remark is that for every
committee scoring rule R

f

based on a family of committee
scoring functions with values bounded by functions exponen-
tial in the number of candidates, the problem of computing
B

G(Rf ,E)

(c) (for some election E and a candidate c) be-
longs to the complexity class P/poly (see, e.g., the book of
Hemaspaandra and Ogihara [17] for an extensive catalog of
complexity classes). Intuitively, the class P/poly contains
those problems for which, given an instance I and a value
h(|I|) (where |I| is the length of the encoding of I and h is
some, not necessarily computable, function whose output is
polynomially bounded in |I|) it is possible to solve the prob-
lem in polynomial time. In our case, the value of h(I) would
consist of the description of functions � from the preceding
two paragraphs. The consequence is that, under standard
complexity-theoretic assumptions, the problem of comput-
ing B

G(Rf ,E)

(c) cannot be NP-hard (however this does not
apply to the more general problem from Lemma 1).

4. BANZHAF VALUES AND APPROXIMA-
TION ALGORITHMS

In this section we show how to use the ideas concerning
Banzhaf values, as discussed above, in order to design good
heuristic algorithms for computing winning committees un-
der decomposable committee scoring rules (indeed, winner
determination under such rules is typically NP-hard).

Lu and Boutilier [19] introduced a greedy algorithm for
computing committees of a given size with score close to the
optimal one (they did it for the �-CC rule, and later other
authors applied the algorithm to further rules, with Fal-
iszewski et al. [13] providing the most general application).
Let E = (C, V ) be the input election, let k be the committee
size, and let R

f

be the committee scoring rule to use (de-
fined by committee scoring functions f = (f

m,k

)
km

). The
algorithm starts with an empty committee S and then exe-
cutes k iterations. In the i’th iteration, it selects a candidate
c /2 S that maximizes the value f -score

E

(S [ {c}).
Faliszewski et al. [13] invoke the classic result of

Nemhauser et al. [23] to argue that this greedy algorithm
outputs a committee whose score is at least a (1 � 1/e)-
fraction of the optimal one, provided that the underlying
scoring rule is decomposable and based on single-winner
scoring functions � = (�(t)

m,k

)
1tkm

such that �(t)

m,k

(i) �
�(t+1)

m,k

(i) for each m 2 N (m > 0), k 2 [m], t 2 [k � 1],
and i 2 [m]. In particular, this applies both to �-CC and
↵
k

-PAV.
Unfortunately, while this greedy algorithm has reasonably

good approximation guarantee and it usually performs quite
well in practice (in terms of its approximability [19, 28]), it
has one serious drawback. Namely, it selects committees
that are in some sense quite biased. For example, for �-CC,
the greedy algorithm always starts by selecting the Borda
winner, whereas for ↵

k

-PAV it always starts by selecting a
candidate with the highest k-Approval score.

We propose to rectify this issue by using a “non-myopic”
variant of the algorithm. The only di↵erence is that instead
of selecting in the i’th iteration a candidate that maximizes
the marginal increase of the given (partial) committee, we
select a candidate with the highest Banzhaf value; specifi-
cally, in the i’th iteration, we compute Banzhaf values focus-
ing on committees of size k, but under the assumption that
the i � 1 committee members from the previous iterations



Notation: f = (f
m,k

)
km

 committee scoring
functions.
E = (C, V ) input election.
k  committee size.

G G(R
f

, E)
S  ;
A C
for i 1 to K do

c argmax
a2A

B
G

(a, k, S)
S  S [ {c}
A S \ {c}

return S

Algorithm 1: Banzhaf-based approximation algorithm.

are already belong to the coalition. The exact pseudocode
is given as Algorithm 1.

As hinted above, and formally stated below, for many
decomposable committee scoring rules (including all rules
described in this paper), Algorithm 1 runs in polynomial
time.

Theorem 3. For a decomposable committee scoring rule
R

f

defined by a family of polynomial-time computable single-

winner scoring functions � = (�(t)

m,k

)
1tkm

, Algorithm 1
is polynomial-time computable.

Proof. Follows by Lemma 1 and a simple analysis of the
algorithm.

5. EXPERIMENTAL ANALYSIS
In this section we report on experiments we performed in

order to assess the approximation quality of Algorithm 1.
We tested our Banzhaf-based approximation algorithms for
�-CC (we intend to extend the experiments to other rules;
the current manuscript is a preliminary presentation of our
ideas). We performed two experiments; in the first we inves-
tigated biases of the algorithm, whereas in the second one
we compared the quality of the generated committees.

Histograms. In the first experiment, building on the work
of Elkind et al. [11], we computed histograms which visually
demonstrate the behavior of our Banzhaf-based approxima-
tion algorithm, and compared it to the greedy algorithm of
Lu and Boutilier [19] (we note that the histogram for this
algorithm was already presented in the full version of the
paper of Elkind et al. [11]).

Specifically, we generated elections from the two-
dimensional Euclidean domain, where both the candidates
and the voters are drawn uniformly at random from a uni-
form square (each candidate and each voter is a point; a
voter ranks the candidates by sorting them in increasing
order of the Euclidean distances). We generated 100 candi-
dates and 100 voters for each election, and computed win-
ning committees with 10 committee members each. We gen-
erated one histogram for the actual �-CC rule (using an ILP
solver to find the optimal solutions), another histogram for
the greedy approximation algorithm of Lu and Boutilier [19],
and another histogram for our Banzhaf-based approxima-
tion algorithm. Each histogram was created by aggregating
10000 elections.

(a) greedy (b) Banzhaf (c) optimal

Figure 1: Comparison of the histograms for �-
CC using the greedy algorithm (on the left), the

Banzhaf-based one (in the center), and the optimal

ILP-based one (on the right). The histograms were

computed for 10000 elections, with 100 candidates

and 100 voters each, for committee size k = 10.

Figure 1 shows the results of the first experiment. It is
quite visible that, while the greedy algorithm of Lu and
Boutilier [19] has a bias towards the center of the histogram
(as explained above), the Banzhaf-based algorithm does not
su↵er from this problem. Further, the histogram of the
Banzhaf-based algorithm looks very similarly to the his-
togram showing the optimal ILP-based algorithm for �-CC
(the rangingCC algorithm, described below, also gets a his-
togram very similar to that for �-CC [11]).

Positions of the Representatives. In the second experi-
ment, we checked the average position (in voters’ preference
orders) of the representatives chosen by various approxima-
tion rules. This is a more direct way of assessing the approx-
imation quality of the algorithms, since �-CC minimizes this
value. Indeed, �-CC maximizes the sum of the Borda scores
of the representatives; we believe, however, that it is more
useful to consider this “reversed” measure. There are two
reason for this. First, measuring the direct approximation
ratio suggests that all the algorithms have near-perfect per-
formance (e.g., we have to choose between 0.98 and 0.99
approximation ratios; this is clearly possible but inconve-
nient). Second, the average position of the representative is
a very intuitive measure from the point of view of the voters:
A voter can more easily interpret information that “on the
average he or she will be represented by someone he or she
ranks as third best” than that “he or she will be represented
by someone he or she prefers to 97 candidates, on average”
(in particular, the former does not require the voter to know
how many candidates there were in the election).

We considered two distributions of voters’ preference or-
ders. The first distribution is the one used in the first ex-
periment (we generated candidates and voters as points on
a square, uniformly at random, and the preference order of
each voter is formed by sorting the candidates with respect
to the distance from the voter). The second one followed
the impartial culture assumption (each voter chose his or
her preference order uniformly at random). For the first
distribution we created 1000 elections, each with 100 voters
and 100 candidates, and we varied the committee size k to
be any integer between 2 and 30; we checked the average
position of each voter’s representative for �-CC (computed
using an ILP solver), rangingCC,4 the greedy approximation

4RangingCC is a variant of Algorithm P [28], improved by
Elkind et al. [11]. The algorithm proceeds as follows: Given
an election E = (C, V ) and a committee size k, it considers



algorithm, and our Banzhaf-based approximation algorithm.
For the second distribution we generated only 250 elections
for each committee size between 2 and 30 (with step 2), but
otherwise the experiment was analogous (the reason for this
restriction was that we ran out of time for our computations;
we plan to have 1000 elections per data point for the final
version of this paper).

Figure 2 shows the results of the second experiment. The
results are normalized to �-CC, i.e., the figure shows the
ratio between the average position of a representative under
a given algorithm and the optimal average position (thus,
the values are always greater or equal to 1). While rang-
ingCC performs very well for small committee sizes, both
the greedy algorithm and our Banzhaf-based approximation
algorithm perform much better as the committee size in-
creases. Further, our Banzhaf-based approximation algo-
rithm consistently outperforms the greedy algorithm.

Running Times. In the analysis above we have disre-
garded the running times of our algorithms. Indeed, both
rangingCC and greedyCC can be significantly faster than
the Banzhaf-based algorithm (by an order of magnitude in
our experiments)5. Thus, one might say that the Banzhaf-
based heuristic has unfair advantage over the greedy algo-
rithm and, in particular, one might consider a greedy al-
gorithm that picks two candidates in each iteration instead
of one. Our very preliminary experiments suggest that this
does not improve the performance of the algorithm, but—
in our setting—increases the running time by two orders of
magnitude as compared to the classic greedy algorithm (re-
sulting in, altogether, a 10 times slower algorithm than the
Banzhaf-based one, with worse quality of results).

6. OUTLOOK
We considered multiwinner elections (held using commit-

tee scoring rules) as cooperative games and, building on
this idea, were able to design improved approximation algo-
rithms for winner determination for a rich class of multiwin-
ner voting rules. We provided some preliminary experiments
to assess the quality of our algorithms. While the experi-
ments showed that in some cases the quality of approxima-
tion of these new approximation algorithms is quite good,
more experiments are needed to fully understand when these
algorithms are most useful. Specifically, one might consider
further election distributions as well as real-world elections.

In this paper we concentrated on the Banzhaf value, as
a fundamental solution concept in cooperative game theory.
It might be interesting to consider other solution concepts,

each threshold value t 2 [m]; for a given threshold value t,
it greedily finds a committee such that as many voters as
possible rank some committee member among the top t po-
sitions (i.e., for a given value t, it first adds to the committee
the candidate ranked among the top t positions by most vot-
ers, removes these voters from consideration, and repeats the
process until k candidates are selected). Then, for each com-
puted committee (one computed committee for each value
of t 2 [m]) it computes its �-CC score; then, it outputs
the committee with the highest score. This algorithm is the
basis of a PTAS for �-CC and has the highest theoretically-
established approximation guarantee for this rule.
5However, we should mention that we used a highly-
optimized variant of our algorithm. In particular, our al-
gorithm never recomputed already-used values of binomial
coe�cients and used formulas from Lemma 1 optimized for
�-CC, to not compute values that have to add up to zero.

(a) 2D model: uniform distribution on a square

(b) Impartial culture

Figure 2: Comparison of the average representa-

tive position for �-CC for two distributions: uniform

square Euclidean domain (on the top) and impartial

culture (on the bottom); for three algorithms: rang-

ingCC, greedyCC, and BanzhafCC (our Banzhaf-

based algorithm). The values are computed for elec-

tions, with 100 candidates and 100 voters each (1000

elections per data point). For each committee size

we present the ratio between the average position of

a voter’s representative under the given algorithm

and under �-CC (computed using an ILP solver).

such as the Shapley value; guiding greedy algorithms by
solution concepts other than the Banzhaf value might lead to
e�cient algorithms with a better quality of approximation.

Finally, in this paper we concentrated on committee scor-
ing rules, especially decomposable committee scoring rules.
While the subclass of decomposable committee scoring rules
is quite rich, it is natural to wonder whether the ideas pre-
sented here can be useful for other multiwinner voting rules.
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ABSTRACT
Probabilistic conditional preference networks (PCP-nets) are a gen-
eralization of CP-nets for compactly representing preferences over
multi-attribute domains. We introduce the notion of a loss func-
tion whose inputs are a CP-net and an outcome. We focus on the
optimal decision-making problem for acyclic and cyclic CP-nets
and PCP-nets. Our motivations are three-fold: (1) our framework
naturally extends to allow reasoning on cyclic CP-nets and PCP-
nets for full generality, (2) in the multi-agent setting, we place no
restriction on agents’ preferences structure and voting rules under
our framework have desirable axiomatic properties, (3) we gener-
alize several previous approaches to finding the optimum outcome
in individual and multi-agent contexts. We characterize the compu-
tational complexity of computing the loss of a given outcome and
computing the outcomes with minimum loss for three natural loss
functions: 0-1 loss, neighborhood loss, and global loss. While the
optimal decision is NP-hard to compute for many cases, we give a
polynomial-time algorithm for computing the optimal decision for
tree-structured PCP-nets and profiles of CP-net preferences with a
shared dependency structure, w.r.t. neighborhood loss function.

1. INTRODUCTION
Many decision-making problems involve choosing an optimal

outcome from a multi-attribute domain where the alternatives are
characterized by p � 1 variables and each variable corresponds
to an attribute of the outcome. In combinatorial voting there are
p issues, and the alternatives correspond to the decisions made on
each issue. For example, a dinner menu can be characterized by
two variables: the main dish M and the wine W. The main dish
can be either beef (Mb) or fish (Mf ) and the wine can be either
white wine (Ww) or red wine (Wr). We want to make an optimal
(joint) decision for an agent or a group of agents with preferences
over the alternatives. However, since the number of outcomes in a
multi-attribute domain is exponentially large, it is impractical for
the agents to express preferences as a full ranking over all out-
comes.

A popular practical solution is to use a compact preference lan-
guage to represent agents’ preferences. Perhaps the most com-
monly used language for agents to represent their preferences over
multi-attribute domains are CP-nets (conditional preference net-
works) [2]. In a CP-net, an agent can specify her local preferences

Appears at: 4th Workshop on Exploring Beyond the Worst Case in Com-
putational Social Choice (EXPLORE 2017). Held as part of the Workshops
at the 16th International Conference on Autonomous Agents and Multia-
gent Systems. May 8th-9th, 2017. Sao Paulo, Brazil.

over any attribute given the values of some other attributes (called
its parents). Such preferences can arise from, and be decomposed
into ceteris paribus statements of the form: “I prefer red wine to
white wine, ceteris paribus, given that meat is served as the main
dish.” The dependency graph of a CP-net is a directed graph where
the vertices are the variables and each variable has incoming edges
from its parents.

For a single agent whose preferences are represented by a CP-
net, a natural optimization objective is to identify undominated out-
comes [3]. Informally, an outcome is undominated if no other out-
come is preferred over it. The problem of computing undominated
outcomes is well studied in the CP-net literature. For acyclic CP-
nets (CP-nets with acyclic dependency graphs), an undominated
outcome always exists and is unique [2]. However, when we allow
cyclic dependencies, undominated outcomes can be hard to com-
pute [3, 9].

Recently, probabilistic conditional preference networks (PCP-
nets) have been introduced as a natural generalization of CP-nets [1,
7]. In a PCP-net, for any variable X and any valuation of its par-
ents, there is a probability distribution over all rankings over X’s
value domain. A PCP-net can be used to represent a single agent’s
uncertain preferences over a set of CP-nets, or a preference profile
of multiple CP-nets [8]. Given an acyclic PCP-net, [7] provides a
polynomial-time algorithm for computing the outcome that is un-
dominated with the highest probability. Despite this promising first
step in decision making with PCP-nets, the optimal decision mak-
ing problem for PCP-nets remains largely open. In particular, is
there any other sensible and more quantitative optimality criterion
beyond “being undominated” that we may consider for CP-nets as
well as PCP-nets? If so, how can we compute them?

In the combinatorial voting setting, we are given a profile, a col-
lection of multiple agents’ individual CP-net preferences or votes.
Several approaches [11, 20, 18, 14, 19, 15, 5, 12] have been pro-
posed to aggregate preferences in this setting by extending standard
voting rules and axiomatic properties. Additionally, [8] represents
the profile with a single PCP-net, and [17] proposes mCP-nets to
deal with partial CP-nets where agents may have preference over
only a subset of the issues. However, much of the existing work
focuses on certain special cases with rather severe restrictions on
agents’ preferences such as allowing only profiles with acyclic CP-
nets, and dependencies that are compatible with a common order
on the issues (O-legality). We design a new class of voting rules
characterized by a loss function which takes as input any profile of
CP-net preferences and outputs a set of loss minimizing outcomes.

1.1 Our Contributions
We take a decision-theoretic approach by modeling the optimal-

ity of an outcome by a loss function, whose inputs are an out-
come (an assignment of values to attributes) and a single (acyclic



Table 1: Complexity of L-LOSS w.r.t. acyclic and cyclic CP-nets. The
complexity remains unchanged for the case of acyclic and cyclic PCP-nets.

Loss fn. Acyclic Cyclic
L0�1 P (trivial) P (Prop. 1)
LN P (Prop. 2)
LG coNP-hard (Thm. 2) coNP-hard

Table 2: Complexity of L-OPTDECISION w.r.t. acyclic and cyclic CP-nets
and PCP-nets.

Loss fn. Acyclic Cyclic
L0�1

P [2] NP-complete (Prop. 3)
LN

LG P (Prop. 4)

(a) CP-nets

Loss fn. Acyclic Cyclic

L0�1
NP-complete,
P for trees [7] NP-complete [7]

LN
NP-hard (Thm. 3),
P for trees (Thm. 4) NP-hard (Thm. 3)

LG coNP-hard (Thm. 5)

(b) PCP-nets

or cyclic) CP-net. In this paper we focus on multi-attribute do-
mains where all variables are binary (although we emphasize that
all our results also apply to multi-valued variables), and the fol-
lowing three natural loss functions for an outcome ~d and a CP-net
C.

1. 0-1 loss function (L0�1): the loss is 1 if ~d is dominated in
C, and is 0 otherwise. This loss function corresponds to the
most probable optimal outcome studied by [7].

2. Neighborhood loss (LN ): the loss is the number of neighbors

that dominate ~d. A neighbor of ~d differs from ~d on only one
attribute. This loss function corresponds to local Condorcet

winner [5].
3. Global loss (LG): the loss is the total number of outcomes

that dominate ~d.
These loss functions can be naturally extended to evaluate the loss
of an outcome in PCP-nets and profiles of CP-nets. We then con-
sider the problem of computing an optimal decision in a loss mini-
mization framework.

Given a loss function L, an outcome ~d, a number k, and a CP-
net (or PCP-net) C, in the L-LOSS problem we are asked whether
the loss of ~d in C is no more than k. Given a loss function L, a
number k, and a CP-net (or PCP-net) C, in the L-OPTDECISION
problem we are asked whether there exists an outcome ~d whose
loss is no more than k. Given a loss function L, a number k, and
a profile P of CP-nets, in the L-OPTJOINTDECISION problem
we are asked whether there exists an outcome ~d whose loss for
the entire profile P is no more than k. The results for L-LOSS
are summarized in Table 1. Our main results on the problems L-
OPTDECISION, and L-OPTJOINTDECISION are shown in Table 2
and Table 3 respectively.

One might be tempted to believe that PCP-nets are so compli-
cated that all problems are hard to compute. This is not true. As
we can see in Table 1, computing LOSS w.r.t. L0�1 and LN can be
done in polynomial time for PCP-nets. Another false belief could
be that for the same loss function, LOSS is easier than OPTDE-

Table 3: Complexity of L-OPTJOINTDECISION w.r.t. profiles of acyclic
and cyclic CP-nets.

Loss fn. Acyclic Cyclic
L0�1 P (Thm. 6) NP-complete (Thm. 6)
LN NP-complete (Thm. 6),

P for shared tree-structured dependency graph.
(Thm. 7)

LG coNP-hard (Thm. 8)

CISION (or vice versa). Neither is true by comparing Table 2(a)
and Table 1. LG-LOSS is coNP-hard but LG-OPTDECISION is in
P for acyclic CP-nets. LN -LOSS is in P but LN -OPTDECISION
is NP-complete for cyclic CP-nets. While it is hard to compute
the optimal outcomes w.r.t. all three loss functions (Table 2), for
tree-structured PCP-nets, we have a polynomial-time algorithm to
compute the optimal outcome (Theorem 4). Similarly, while it is,
hard to compute the optimal outcomes w.r.t. L0�1 for acyclic PCP-
nets, a simple polynomial time algorithm allows us to compute the
optimal outcome for a profile of acyclic CP-nets.

Finally, we show that every voting rule under our framework sat-
isfies anonymity, category-wise neutrality, consistency and weak

monotonicity.

1.2 RELATED WORK AND DISCUSSIONS
Since PCP-nets can be used to represent the preferences of a

group of agents, our loss-minimization framework can naturally
be used as a solution to group decision-making as done by [7] for
L0�1. However, among all three loss functions considered in this
paper, only L0�1 has been studied for PCP-nets. All our computa-
tional results about LN and LG for PCP-nets are new.

Our loss-minimization framework is also related to other re-
cent research agenda in aggregating CP-nets in multi-attribute do-
mains [17, 11, 20, 18, 13, 14, 19, 15, 5, 6, 12, 4]. The main chal-
lenge is in the case where agents’ preferences are represented by
cyclic CP-nets, or there does not exist a common ordering over
attributes that is compatible with all agents’ CP-nets. In these
cases even the optimality of an outcome is not clear. We handle
cyclic CP-nets differently by introducing loss functions that work
for cyclic CP-nets and PCP-nets. At a high level, our approach is
similar to the idea of applying a positional scoring rule to profiles of
LP-trees [12]. The difference is that an LP-tree represents a linear
order over a multi-attribute domain but CP-nets generally represent
a partial order. Therefore, positional scoring rules are not directly
applicable to profiles of CP-nets.

2. PRELIMINARIES
Let I = {X1, ..., Xp} be a finite set of p variables with finite

domains D(Xi). Let L(D(Xi)) denote the set of all linear orders
over D(Xi). For ease of presentation, we will assume that all vari-

ables are binary in this paper. An assignment (or outcome) ~d is a
vector in ⇧ipD(Xi). We use either dX

i

or di to denote the value
of Xi in ~d, and d�i to denote the values of all other variables. For
any subset of variables S ✓ I , we let D(S) = ⇧X

i

2SD(Xi), and
D(�S) = ⇧X

i

2I\SD(Xi). We use ~dS to denote the assignment
to the variables in S.

DEFINITION 1. [2] A CP-net C over the set of variables I is

given by two components (i) a directed graph G = (I, E) called

the dependency graph, and (ii) for each variable Xi, there is a

conditional preference table CPT (Xi) that contains a linear or-

der �i
C,~u over D(Xi) for each valuation ~u of the parents of Xi



(denoted Pa(Xi)) in G.

When G is (a)cyclic we say that C is a (a)cyclic CP-net.

The partial order �C induced by a CP-net C over the set
of all possible assignments ⇧ipD(Xi) is the transitive closure
of {(ai, ~u, ~z) � (bi, ~u, ~z)} : i  p; ai, bi 2 D(Xi); ~u 2
D(Pa(Xi)); ~z 2 D(�(Pa(Xi) [ {Xi}))}. A CP-net is said to
be consistent if �C is asymmetric. Acyclic CP-nets are consistent
but cyclic CP-nets are not necessarily consistent.

DEFINITION 2 (WEAK AND STRICT DOMINANCE). An as-

signment ~a weakly dominates~b if ~a �C
~b. An assignment ~a strictly

dominates~b if ~a �C
~b and

~b ⌥C ~a.

Dominance relations can also be described by improving flip dy-

namics [2]. If ~d0 differs from ~d in the value of exactly one variable
Xi (i.e. d0i 6= di, d0�i = d�i) and d0i �i

C,~u di where ~u =

~dPa(X
i

),
then the change from ~d to ~d0 via changing the value of Xi is an im-

proving flip, and ~d �C
~d0. For any pair of assignments ~a,~b where

~a �C
~b, there exists a sequence of such improving flips starting

from ~a by which we obtain ~b. If ~a ⌥C
~b, then there is no such se-

quence of improving flips from~a to~b. In the case of cyclic CP-nets,
it is possible to simultaneously have ~a �C

~b and~b �C ~a and have
a corresponding sequence of improving flips in either direction.

M
Main dish preference

Mb � Mf

W
Main dish M Wine preference

Mb Wr � Ww

Mf Ww � Wr

MbWr MbWw

MfWr MfWw

Figure 1: A CP-net representing preferences for dinner consisting
of a main dish (M) and wine (W). The available choices are: For
the main course, either beef (Mb) or fish (Mf ), and for wine, either
red wine (Wr) or white wine (Ww).

EXAMPLE 1. Figure 1 shows an agent’s preferences over din-

ner represented as a CP-net and its hypercube representation [5].

In the hypercube representation there is an edge between every

pair of neighboring assignments representing the agent’s prefer-

ences. For example, the edge MbWr ! MbWw means that

MbWr � MbWw, and that we can obtain MbWr from MbWw

by an improving flip. Serving beef along with red wine (i.e. the as-

signment MbWr) is the optimal decision and it strictly dominates

every other configuration.

DEFINITION 3. A PCP-net [1, 7] Q over the set of variables

I is given by (i) a directed graph G = (I, E), and (ii) for each

variable Xi, there is a probabilistic conditional preference table
PCPT (Xi) that contains a probability distribution f i

Q,~u over

L(D(Xi)) for each valuation ~u of the parents of Xi in G.

A CP-net C with dependency graph G = (V,E0
) is compatible

with a PCP-net Q with a dependency graph G = (V,E) if E0 ✓ E.
Any PCP-net Q represents a probability distribution over all CP-
nets that are compatible with Q. For any CP-net C compatible with
a PCP-net Q, the probability of C, denoted by fQ(C), is calculated
by multiplying the probabilities of all local preferences in C by
looking up corresponding entries in PCPTs in Q. Formally,

fQ(C) =

Y
X

i

Y
~u2D(Pa

Q

(X
i

))
f i
Q,~u(�i

C,~u)

EXAMPLE 2. Figure 2 illustrates a PCP-net Q and a CP-net

C that is compatible with Q. We have fQ(C) = 0.3 ⇥ 0.6 ⇥
0.3. The first 0.3 is the probability of Mf � Mb in C; the 0.6 is

the probability of Wr � Ww given Mb in C; the last 0.3 is the

probability of Wr � Ww given Mb in C.

M
M pref. Pr.

Mb � Mf 0.7
Mf � Mb 0.3

W

M W pref. Pr.
Mb Wr � Ww 0.6
Mb Ww � Wr 0.4
Mf Wr � Ww 0.3
Mf Ww � Wr 0.7

(Q)

M
M pref.

Mf � Mb

W
M W pref.
Mb Wr � Ww

Mf Wr � Ww

(C)

Figure 2: PCP-net Q and a CP-net C it induces.

A profile P = (P1, ..., Pn) or n agents’ CP-net preferences over
a set of variables I is a collection of CP-nets Pi, 1  i  n over
I , one for each agent i representing her vote. A profile P is said
to be O-legal if there is some linear order O over the variables I
such that for every CP-net Pi, every variable Xi, it holds that if
Xj 2 Pa(Xi), then Xj �O Xi i.e that every parent of Xi appears
before Xi in O. A voting rule r is a function that takes as input a
profile and outputs a set of outcomes.

2.1 Loss Functions
In this paper we will focus on three loss functions. Each loss

function L takes a CP-net C and an assignment ~d as inputs and
outputs a real number L(C, ~d).

DEFINITION 4. The 0-1 loss function is defined as

L0�1(C, ~d) =

(
1 if there exists

~d0 such that

~d0 �C
~d,

0 otherwise

That is, the 0-1 loss function takes the value 0 if and only if ~d is not
weakly dominated by any other assignment in C.

DEFINITION 5. The neighborhood loss function is defined as

LN (C, ~d) = |{~d0 : 9i : d0i �C di and d0�i = d�i}|.

That is, the neighborhood loss of ~d in C is the number of ~d’s neigh-
bors that can be obtained by a single improving flip from ~d in C.

DEFINITION 6. The global loss function is defined as

LG(C, ~d) = |{~d0 : ~d0 �C
~d, and

~d ⌥C
~d0|.

That is, the global loss of ~d in C is the total number of assignments
that strictly dominate ~d in C.

For example, in the CP-net of Figure 1, MfWr has a neighbor-
hood loss of 2, and a global loss of 3. MbWr has a global loss of 0
because no assignment strictly dominates it.

All loss functions can be naturally extended to PCP-nets by com-
puting the expected loss of a given assignment w.r.t. the distribution
fQ over CP-nets represented by the given PCP-net Q. Similarly, the
loss functions extend to a profile of CP-net preferences by comput-
ing the sum total of the loss of a given assignment w.r.t. each of the
CP-nets in the profile.



3. COMPUTING THE LOSS OF ASSIGN-
MENTS

We now formally define the decision problem of computing the
loss of an assignment w.r.t. a loss function.

DEFINITION 7 (L-LOSS). Given a PCP-net Q, a loss func-

tion L, a decision

~d, and a number k 2 R, in L-LOSS we are asked

to compute whether L(Q, ~d)  k.

OBSERVATION 1. Because CP-nets are a special case of PCP-

nets, any hardness results for CP-nets immediately extend to the

case of PCP-nets. Conversely, if a problem is easy for PCP-nets

then it is also easy for CP-nets.

We find that L0�1-LOSS and LN -LOSS are easy for even cyclic
PCP-nets. By our previous observation, this also extends to acyclic
PCP-nets and both acyclic and cyclic CP-nets.

PROPOSITION 1. L0�1-LOSS is in P for possibly cyclic PCP-

nets.

We note that given a cyclic PCP-net Q, the 0-1 loss of ~d in a CP-net
C that is compatible with Q is 1 if and only if ~d is less preferred
than one of its neighbors. Therefore, we have

L0�1(Q, ~d) = 1�
pY

i=1

f i
Q,d

Pa(X
i

)
(di � ¯di),

where ¯di is the complement of di, f i
Q,d

Pa(X
i

)
is the PCPT (Xi)

given that the parents of Xi take their values as in ~d.

PROPOSITION 2. LN -LOSS is in P for possibly cyclic PCP-

nets.

PROOF. It is not hard to check that LN (Q, ~d) =Pp
i=1 f

i
Q,d

Pa(X
i

)
(

¯di � di).

THEOREM 1. LG-LOSS is PSPACE-complete for inconsistent,

cyclic CP-nets.

PROOF. We show a reduction from the PSPACE-complete prob-
lem WEAKLY NON-DOMINATED OUTCOME [9], where we
are given a CP-net C and an assignment ~d, and we are asked
whether ~d is weakly non-dominated. An assignment is weakly non-
dominated if there is no ~d0 �C

~d. It follows from the definitions
that ~d is weakly non-dominated if and only if LG(C, ~d) = 0, and
not weakly non-dominated if and only if LG(C, ~d) � 1. This cor-
responds to a reduction to LG-LOSS where k = 0.

THEOREM 2. LG-LOSS is coNP-hard for acyclic CP-nets but

in PSPACE.

PROOF. We give a polynomial time reduction from 3-SAT to
the complement of LG-LOSS, denoted by LG-LOSS, which is de-
fined as: Given a CP-net C, a decision ~d, and a number k 2 R,
is LG(C, ~d) > k. Our construction is inspired by the one used
in [2] to prove the hardness of dominance testing in acyclic graphs.
In an instance of 3-SAT we are given a Boolean formula F =

C1^...^Cn in 3-CNF over a set of Boolean variables {x1, ..., xm}.
We are asked whether there exists a truth assignment to the vari-
ables such that F is satisfied. We construct an instance of LG-LOSS
(see Figure 3), beginning with the construction of a CP-net C as
follows:
• I = {V1, ¯V1, ..., Vm, ¯Vm} [ {C1, ..., Cn} [ {D0, D1, ...,
D2m+n} is a set of binary variables. Each Vi, ¯Vi corresponds to

C1

...

... Cn

Vn1 ...
¯Vn3

D0

Cn value pref.
0 0 � 1

1 1 � 0

D1 ... D2m+n

D0 value pref.
0 0 � 1

1 1 � 0

Figure 3: The CP-net used in the proof of Theorem 2.

a Boolean variable xi involved in the 3-SAT instance. Each Ci

corresponds to a clause Ci.
• Let xi1, xi2, xi3 be the variables involved in the clause Ci.
Then, (a) for all Vi, ¯Vi 2 I , we let Pa(Vi) = Pa( ¯Vi) = ;,
(b) Pa(Ci) = {Vi1, ¯Vi1, Vi2, ¯Vi2, Vi3, ¯Vi3}, and importantly,
(c) for all 2  i  n, Pa(Ci) = Pa(Ci) [ {Ci�1}.
• For all 1  i  2m + n, we let Pa(D0) = Cn and Pa(Di) =

{D0}.
We populate the associated CP-tables as follows:

• The CPTs for all Vi, ¯Vi are 1 � 0.
• For all Ci, we add the entry 1 � 0 for every assignment to
Pa(Ci) where there exists a k  3 such that all the following con-
ditions are satisfied: (1) Vi

k

6= ¯Vi
k

, (2) Vi
k

= 1 if xi
k

is in clause
j, OR Vi

k

= 0 if ¬xi
k

is in Cj , and (3) Ci�1 = 1 if i > 1. Add
entry 0 � 1 for all remaining assignments.
• For D0, 1 � 0 if Cn = 1, 0 � 1 otherwise.
• For all i  2m + n, we let the CPT (Di) be 1 � 0 if D0 = 1,
and 0 � 1 otherwise.

Finally, we let ~d =

~
0 and k = 2

2m+n.

CLAIM 1. F is satisfiable if and only if LG(C,~0) > 2

2m+n
.

PROOF. Intuitively, starting from~
0, D0 acts as a switch that can

only be flipped on when the variables Vi, ¯Vi are set in a way so that
the corresponding assignment to xi’s satisfies F , and only when
all the clause variables Ci have flipped (sequentially) to 1. Once
D0 flips to 1, the variables D1i2m+n may flip to 1 indepen-
dently. Together, they account for a loss of 22m+n. The formal
proof works as follows.

) Let � be an assignment that satisfies F . Then, by construc-
tion, there exists a sequence of improving flips starting from ~

0 as
follows: For i = 1, ...,m, if �i = 1, flip Vi to 1, otherwise, flip ¯Vi

to 1. By construction, we can flip C1 to 1 and subsequently, each
C2, ..., Cn to 1 in this order. This enables the flip of D0 to 1, and
enables D1, ..., D2m+n to be flipped to 1 in any order. Together
with the flip of D0 to 1, and Cn to 1, there are at least 22m+n

assignments that are preferred over ~0.
( Suppose F be unsatisfiable. For sake of contradiction, sup-

pose that ~0 has a global loss LG(C,~0) > 2

2m+n. There are at
most 22m+n � 1 assignments that involve changes in the values
of 2m + n variables {Vi, ¯Vi}im [ {Ci}in. For the inequal-
ity to hold there must be a sequence of improving flips to an as-
signment where a variable Di has value 1. Then there must be
a sequence S from ~

0 to an assignment ~d0 where D0 = 1, and
C1, ..., Cn must have already been flipped to 1 along S in turn.
Consider the construction of an assignment � to the Boolean vari-
ables as follows. By construction, 8Ci, there must exist an as-
signment in S obtained by flipping Ci from 0 to 1. When the flip
occurs, there must exist some j : Vj 6= ¯Vj , Vj , ¯Vj 2 Pa(Ci). If
Vj = 1, ¯Vj = 0, Vj , ¯Vj 2 Pa(Ci), set �j = 1. Otherwise, if
Vj = 0, ¯Vj = 1, set �j = 0. Simultaneously, clause Ci must be
satisfied. Once any of the variables Vi, ¯Vi is set to 1 in the sequence,



it can never flip back to 0 in S subsequently (doing so would not be
an improving flip). There never exists a pair of assignments e, e0 in
S such that Vi = 1, ¯Vi = 0 in e but Vi = 0, ¯Vi = 1 in e0. There-
fore, when each Ci is flipped to 1 in S, the values of the variables
Vj , ¯Vj 2 Pa(Ci) are consistent with the assignment of the corre-
sponding variables xj in � that satisfies clause Ci. If we can flip
Cn to 1 in this way, then � is a satisfying assignment.

It is easy to see that the problem is in PSPACE. We conjecture
that the problem is PSPACE-complete.

4. COMPUTING OPTIMAL DECISIONS
FOR PCP-NETS

We define the decision problem of computing optimal assign-
ments L-OPTDECISION as follows.

DEFINITION 8 (L-OPTDECISION). Given a PCP-net Q, a

loss function L, and a number k 2 R, does there exist an assign-

ment

~d such that L(Q, ~d)  k?

PROPOSITION 3. L0�1-OPTDECISION and LN -

OPTDECISION are NP-complete for cyclic CP-nets.

PROOF. We give a reduction from the problem EXISTENCE
OF NON-DOMINATED OUTCOME [9]. An outcome is non-
dominated if it uniquely belongs to a maximal dominance class (i.e.
there is no way to improve from ~d to any other assignment). It fol-
lows from the definition that an assignment ~d is a non-dominated
outcome w.r.t. a CP-net C if and only if L0�1(C, ~d) = 0 (equiva-
lently, LN (C, ~d) = 0). The problem of deciding the existence of a
non-dominated outcome reduces to the checking if there is a deci-
sion ~d with L0�1(C, ~d) = 0 (equivalently, LN (C, ~d) = 0).

PROPOSITION 4. LG-OPTDECISION can be solved in constant

time for cyclic CP-nets.

PROOF. For any CP-net C, a weakly non-dominated outcome ~d

always exists such that LG(C, ~d) = 0.

PROPOSITION 5. L0�1-OPTDECISION is in P for PCP-nets Q
with a tree structured dependency graph but NP-complete in gen-

eral for acyclic dependency graphs.

PROOF. argmin~d L0�1(Q, ~d) = argmin~d(1 �
Qn

i=1

f i
Q,d

Pa(X
i

)
(

¯di � di)) = 1 � argmax~d(
Qn

i=1 f
i
Q,d

Pa(X
i

)
(

¯di �
di)). This problem is equivalent to finding most probable expla-
nation (MPE) for a Bayesian network [7]. This problem is NP-
complete in general for acyclic graphs but is in P for tree structured
Bayesian networks [10].

THEOREM 3. LN -OPTDECISION is NP-hard for acyclic PCP-

nets.

PROOF. We give a reduction from 3-SAT. Given a 3-SAT in-
stance F = C1 ^ ... ^ Cn, we consider the following construction
of an instance of LN -OPTDECISION:
• I = {Vi, ¯Vi}1im [ {Ci}1in [ {D} is a set of binary vari-
ables. Each Vi, ¯Vi corresponds to a Boolean variable xi involved
in the 3-SAT instance. Each Ci corresponds to the clause Ci in F .
• For all Ci 2 I , let xi1, xi2, xi3 be the variables involved in clause
Ci. Then, (a) for all Vi, ¯Vi 2 I , we let Pa(Vi) = Pa( ¯Vi) = ;,
(b) Pa(Ci) = {Vi1, ..., ¯Vi3}, and importantly, (c) for all
2  i  n, we let Pa(Ci) = Pa(Ci) [ {Ci�1}.
• Pa(D) = Cn.

We now define the PCP-tables.
• For all Vi, ¯Vi, 1 � 0 (whose probability is 0.5).
• For all Ci, we add entry 1 � 0 (whose probability is 1) for every
assignment to Pa(Ci) that satisfies all the following conditions:
(1) Vi

k

6= ¯Vi
k

, (2) Vi
k

= 1 if xi
k

in clause j, OR Vi
k

= 0 if ¬xi
k

in Cj , and (3) Ci�1 = 1 if i > 1. Add entry 0 � 1 (whose
probability is 1) for all assignments to Pa(Ci) that do not satisfy
all conditions.
• For D: if Cn = 1, then we add an entry 1 � 0 (whose probability
is 1). Otherwise, add an entry 0 � 1 (whose probability is 0.5).

C1

...

... Cn

Vn1 ...
¯Vn3 1 � 0 with probability 0.5

D

D0 value pref.
0 0 � 1 with probability 0.5
1 1 � 0

Figure 4: Construction of PCP-net from 3-SAT instance for Theo-
rem 3.

We show that F is satisfiable if and only if there exists an assign-
ment ~d such that LN (Q, ~d)  n.

) Let � be an assignment to the Boolean variables that satisfies
F . Let ~d be the assignment where if �i = 1, dV

i

= 1, dV̄
i

= 0,
otherwise, dV

i

= 0, dV̄
i

= 1, all dC
i

= 1, and dD = 1. Now,
consider any CP-net C induced by Q. The only variables that can
change value in a single improving flip are the variables Vi, ¯Vi. The
total expected neighborhood loss of ~d is at most 0.5 · 2n.

( Let F be unsatisfiable, and for the sake of contradiction, let ~d
be an assignment with loss LN (Q, ~d)  n. Every assignment has
neighborhood loss of at least 0.5 · 2n contributed by the variables
Vi, ¯Vi. If dC

n

= 0, then there is an improving flip in the value of
D with probability 0.5. If dC

n

= 1, and dC
i

= 1 for all i < n,
then either there is an improving flip in the value of some Ci or F
is satisfiable. If there is a dC

i

= 0, i < n, then there must exist a
pair Cj , Cj+1, j < n such that dC

j

= 0, dC
j+1 = 1. Again, there

is a non zero probability that Cj+1 has an improving flip to 0 in
some induced CP-net.

THEOREM 4. LN -OPTDECISION can be computed in polyno-

mial time for tree structured PCP-nets.

Let Q be a tree structured PCP-net with dependency graph G. We
propose an algorithm that visits each variable in G in a bottom-up,
post order manner. Let X be visited in the current iteration, and let
W denote the only parent of X . Suppose we have computed the
quantity lwx for every x 2 D(X), which stores the minimum pos-
sible contribution to the neighborhood loss from X and its descen-
dants when W = w and X = x. Then, for every w 2 D(W ) we
determine the assignment x 2 D(X) to X that minimizes the con-
tribution to the neighborhood loss from X and its descendants and
store it in valwX = argminx l

w
x by minimizing over x 2 D(X).

Intuitively, valwX stores the value of X that can ensure the lowest
contribution to the neighborhood loss from assignments X and its
descendants. We now revisit the computation of lwx . Let Y be the
descendants of X . lwx is computed as lwx = lxvalx

Y

+ fX
Q,w(x̄ � x).

When the algorithm computes the value of the root variable that
minimizes the l value, we can retrieve the solution ~d by backtrack-
ing in a top down manner: At each iteration, let the current vertex
be X with the assignment x, and its descendants be the set of vari-
ables W . Set each W to the value valxW .

EXAMPLE 3. Consider the example PCP-net in Figure 2. We

trace the steps performed by the algorithm in Theorem 4.



At iteration 1, we start at W and compute the distribution lMW =

(l
M

b

W
r

= 0.4, l
M

b

W
w

= 0.6, l
M

f

W
r

= 0.7, l
M

f

W
w

= 0.3). We can now

compute val
M

b

W = Wr, val
M

f

W = Ww. Then we move up one

level.

At iteration 2, we are currently at M and compute l;M = (l;M
b

=

0.3 + l
M

b

W
r

, l;M
f

= 0.7 + l
M

f

W
w

) = (l;M
b

= 0.3 + 0.4, l;M
f

=

0.7 + 0.3).
The choice of Mb guarantees the lowest possible neighborhood

loss from M and its descendants. We have that val
M

b

W = Wr .

Indeed, serving beef with red wine guarantees the lowest possible

neighborhood loss.

THEOREM 5. LG-OPTDECISION is coNP-hard for acyclic

PCP-nets.

PROOF. We show a reduction from 3-SAT to the complement of
LG-OPTDECISION, LG-OPTDECISION defined as: given a PCP-
net Q, a parameter k, is it true that 8~d, LG(Q, ~d) > k. It is easy
to verify that the problem is in PSPACE. The construction is a
slight modification of the construction used in the proof of The-
orem 2. The PCP-net Q (See Figure 5) is different from the CP-net
in the proof of Theorem 2 in the following ways. We note that
k = 2

2m+n remains the same.
• The number of D variables is 4m+ n+ 1 now (vs. 2m+ n+ 1

in the proof of Theorem 2).
• For all Vi, ¯Vi, we now have 1 � 0 with probability 0.5.

C1

...

... Cn

Vn1 ...
¯Vn3 1 � 0 with probability 0.5

D0

Cn value pref.
0 0 � 1

1 1 � 0

D1 ... D4m+n

D0 value pref.
0 0 � 1

1 1 � 0

Figure 5: Construction of PCP-net from 3-SAT instance for Theo-
rem 5.

Let � satisfy F . Consider the CP-net instance C where for ev-
ery i such that �i = 1, C has CP-table entries 1 � 0 for Vi, and
0 � 1 for ¯Vi. Similarly for every i such that � = 0, let 0 � 1

be the entry for Vi, and 1 � 0 be the entry for ¯Vi. This CP-net
is induced with probability 0.52m. Let ~d have dV

i

, dV̄
i

set accord-
ing to �, all dC

j

= 1, and have all dD
i

= 0. It is clear that
LG(C, ~d) = 2

4m+n. Now, consider the set of assignments ~d0 that
do not match ~d in the values of any or all of the variables Vi, ¯Vi or
Cj . By construction of C, there is always a sequence of improving
flips from such ~d0 to ~d as follows: If ~d0 differs in the value of Vi or
¯Vi: then either Vi 6= ¯Vi (then there is an improving flip to Vi =

¯Vi),
or Vi =

¯Vi already. In either case, there is an improving sequence
to an assignment where Cn = 0, and subsequently to one where all
Di = 0. Then, there is always an improving sequence to ~d. Every
such assignment ~d0 has loss of at least 24m+n in C.

Consider the remaining assignments ~d0 that match ~d in values of
Vi, ¯Vi, and Cj , but some k � 1 among D0, ..., D4m+n are set to
1. Consider the case where D0 = 0, then there is an improving
sequence from ~d0 to ~d. Now, consider the case where D0 = 1 in
~d0. Then, consider the CP-net C0 induced with probability 0.52m

where variable of type Vi, ¯Vi has preference 1 � 0 over it. There
is an improving sequence from ~d0 to a ~d00 where all Di are set to 1.

By construction of C0, there is an improving sequence to an assign-
ment where all variables Vi, ¯Vi are set to 1, and all Cj are set to 0.
Subsequently, there is a flip to an assignment where D0 = 0 and
then Di, 1  i  4m+ n can flip independently to 0. The loss of
~d0 in C0 is at least 24m+n. We have shown that when F is satisfi-
able, every assignment has a loss at least 24m+n w.r.t. some CP-net
which occurs with probability 0.52m. Therefore, every assignment
has expected global loss of at least 22m+n.

Let F be unsatisfiable. Consider the assignment ~0. By construc-
tion there does not exist any assignment to Vi, ¯Vi that causes im-
proving flips from ~

0 to an assignment where Cn = 1. For sake of
contradiction, consider an assignment ~d0 where Cn = 1 obtained
by an improving sequence from ~

0 w.r.t. some CP-net C. Consider
the sequence S used to obtain ~d0. By construction every Ci<n must
be flipped to 1 before Cn, and every such flip happens in a setting
of Vi, ¯Vi that is consistent with an assignment to the Boolean vari-
ables xi that satisfies the clause ci. Note that once either Vi, ¯Vi is
flipped to 1, it cannot be flipped back. Together, this implies that
there is an assignment of the Boolean variables which satisfies F ,
a contradiction.

Therefore, for any CP-net C that is induced with non-zero proba-
bility according to Q, the global loss of~0 is at most 22m+n�1, and
involves improving flips in the values of 2m variables Vi, ¯Vi, and
n variables Ci. Therefore, when F is unsatisfiable, the assignment
~
0 has loss less than 2

2m+n.

5. COMPUTING OPTIMAL DECISIONS
FOR CP-NET PROFILES

Given a profile P = (P1, ..., Pn), a collection of n CP-nets,
we define the loss of a decision ~d w.r.t. P and a loss function L
as L(P, ~d) =

Pn
i=1 L(Pi, ~d). An optimum decision is one that

minimizes the loss. This leads to a new class of voting rules char-
acterized by a loss function. Given a loss function L, the voting rule
rL takes as input a profile P of CP-nets and outputs a set of out-
comes that minimize the loss w.r.t. the preferences in P and the loss
function L. Formally, rL(P ) = argmin~d L(P,

~d). We define the
decision problem of computing optimal joint decisions under this
setting for a profile of CP-net preferences, L-OPTJOINTDECISION,
as follows.

DEFINITION 9 (L-OPTJOINTDECISION). Given a profile P ,

a collection of CP-net preferences, a loss function L, and a number

k 2 R, does there exist an assignment

~d such that L(P, ~d)  k?

PROPOSITION 6. L0�1-OPTJOINTDECISION is in P for a pro-

file with acyclic CP-nets and NP-complete for cyclic CP-nets.

PROOF. For every CP-net Pi 2 P , there exists a unique de-
cision with loss 0 which corresponds to the unique undominated
outcome, and every other decision has loss 1. This outcome can
be computed in polynomial time. It is easy to check that the set of
decisions that have 0 L0�1 loss in a majority of the CP-nets in P
minimize the loss w.r.t. L0�1 and that this set can be computed in
polynomial time by computing the unique, undominated outcome
for each CP-net in the profile.

The NP-completeness for the case of cyclic CP-nets follows from
Proposition 3.

THEOREM 6. LN -OPTJOINTDECISION is NP-complete for an

O-legal profile of acyclic CP-nets.

PROOF. We give a reduction from 3-SAT. Given a 3-SAT in-
stance F = C1 ^ ... ^ Cn, we consider the following construction



of an instance of LN -OPTJOINTDECISION on an O-legal profile P
with two votes P1 and P2 with the same dependency graph:
• I = {Vi, ¯Vi}1im [ {Ci}1in [ {D} is a set of binary vari-
ables. Each Vi, ¯Vi corresponds to a Boolean variable xi involved
in the 3-SAT instance. Each Ci corresponds to the clause Ci in F .
• For all Ci 2 I , let xi1, xi2, xi3 be the variables involved in clause
Ci. Then, (a) for all Vi, ¯Vi 2 I , we let Pa(Vi) = Pa( ¯Vi) = ;,
(b) Pa(Ci) = {Vi1, ..., ¯Vi3}, and importantly, (c) for all
2  i  n, we let Pa(Ci) = Pa(Ci) [ {Ci�1}.
• Pa(D) = Cn.

We now define the CP-tables. The CP-net P1 has CP-tables as
follows:
• For all Vi, ¯Vi, 1 � 0.
• For all Ci, we add the entry 1 � 0 for every assignment to
Pa(Ci) where there exists a k  3 such that all the following con-
ditions are satisfied: (1) Vi

k

6= ¯Vi
k

, (2) Vi
k

= 1 if xi
k

is in clause
j, OR Vi

k

= 0 if ¬xi
k

is in Cj , and (3) Ci�1 = 1 if i > 1. Add
entry 0 � 1 for all remaining assignments.
• For D: if Cn = 1, 1 � 0. Otherwise, 0 � 1.

The CP-net P2 has CP-tables as follows:
• For all Vi, ¯Vi, 0 � 1.
• For all Ci, we add the entry 1 � 0 for every assignment to
Pa(Ci) where there exists a k  3 such that all the following con-
ditions are satisfied: (1) Vi

k

6= ¯Vi
k

, (2) Vi
k

= 1 if xi
k

is in clause
j, OR Vi

k

= 0 if ¬xi
k

is in Cj , and (3) Ci�1 = 1 if i > 1. Add
entry 0 � 1 for all remaining assignments.
• For D, 1 � 0.

We show that F is satisfiable if and only if there exists an assign-
ment ~d such that LN (P, ~d)  2n.

Note that the only outcomes that contribute to the neighborhood
loss of a given outcome are those that can obtained using a single
improving flip i.e. in the change in the value of a single variable that
is locally improving. Note also that for any assignment ~d, the to-
tal contribution from improving flips involving the variables Vi, ¯Vi

from both the CP-nets together is exactly 2n.
) Let � be an assignment to the Boolean variables that satis-

fies F . Let ~d be the assignment where (i) whenever �i = 1,
dV

i

= 1, dV̄
i

= 0, and whenever �i = 0, dV
i

= 0, dV̄
i

= 1,
(ii) all dC

i

= 1, and (iii) dD = 1. By construction, in either of
the CP-nets P1, P2, the only variables that can change value in a
single improving flip are the variables Vi, ¯Vi. Thus, the total neigh-
borhood loss of ~d w.r.t. the profile P is exactly 2n.

( Let F be unsatisfiable, and for the sake of contradiction, let ~d
be an assignment with loss LN (P, ~d)  2n. Every assignment has
neighborhood loss of exactly 2n contributed by the variables Vi, ¯Vi

from both the CP-nets P1, P2 together. Now, if dC
n

= 0, then by
construction, for any value of dD , there is an improving flip in the
value of D w.r.t. the preferences in one of the CP-nets P1, P2. If
dC

n

= 1, and there is some i < n such that dC
i

= 0, then there
must exist a pair Cj , Cj+1, j < n such that dC

j

= 0, dC
j+1 = 1.

Then, there is an improving flip to 0 involving Cj+1 in at least one
of the CP-nets. If dC

n

= 1, and dC
i

= 1 for all i < n, then, by
construction, either there is an improving flip in the value of some
Ci or F is satisfiable, a contradiction.

THEOREM 7. LN -OPTJOINTDECISION is in P for a profile of

acyclic, tree structured CP-nets with a common dependency graph

G.

PROOF. Let P = (P1, ..., Pn) be a profile of tree structured
CP-net preferences over a set of issues I , that share the same de-
pendency graph G. We propose a small modification to the algo-
rithm in Theorem 4 that iteratively visits each variable in G in a
bottom-up, post order manner. We will describe the algorithm for

the case of binary valued variables for the sake of presentation, but
we note that it is easy to extend to multi-valued variables.

Let X be the variable that is being visited in the current iteration,
and let W be the parent of X in G. For every CP-net Pi, every
x 2 D(X), and every w 2 D(W ), we store a value lwi,x that tracks
the minimum contribution to the neighborhood loss from X and
its descendants in G when W = w, and X = x. For every x 2
D(X), and every w 2 D(W ), we store a value lwx =

P
1in lwi,x

which tracks the contribution for the entire profile. Note that for a
given value w of the variable W , and quantities lwx for every x 2
D(X), valwX = argminx l

w
x determines the value of x that ensures

the lowest contribution to the neighborhood loss from improving
flips in the values of X and its descendants in G from the entire
profile.

Let us revisit the computation of lwx . Let Y be the descendants of
X . The quantity lwx is computed as: lwx =

P
1in lxi,valx

Y

+ {1,
if x̄ �X

P
i

,w x; 0, otherwise}.
When the algorithm computes the value of the root variable that

minimizes the l value, we can retrieve the solution ~d by backtrack-
ing in a top down manner: At each iteration, let the current vertex
be X with the assignment x, and its descendants be the set of vari-
ables W . Set each W to the value valxW .

THEOREM 8. LG-OPTJOINTDECISION is coNP-hard for an

O-legal profile of acyclic CP-nets.

PROOF. We give a reduction from 3-SAT. Given a 3-SAT
instance F = C1 ^ ... ^ Cn, we give a polynomial
time reduction to the complement of LG-OPTJOINTDECISION,
LG-OPTJOINTDECISION which we define as: given a pro-
file of CP-net preferences P , a parameter k, is it true that
8~d, LG(P, ~d) > k. Consider the following construction of an in-
stance of LG-OPTJOINTDECISION on an O-legal profile P . We
will show that F is satisfiable if and only if 8~d, LG(P, ~d) >
2

2m+n � 1.
All the CP-nets in P are defined over the following set of vari-

ables:
• I = {Vi, ¯Vi}1im [ {Ci}1in [ {Di}0i2m+n is a set of
binary variables. Each Vi, ¯Vi corresponds to a Boolean variable xi

involved in the 3-SAT instance. Each Ci corresponds to the clause
Ci in F .

The constructed profile P = (P0, P1, ¯P1, ..., Pm, ¯Pm) of 2m+1

votes is O-legal w.r.t. O = V1 � ¯V1 � ... � ¯Vm � C1 � ... �
Cn, D0 � ... � D2m+n.
I The CP-net P0 has the following dependency graph (See Fig-
ure 3):
• For all Ci 2 I , let xi1, xi2, xi3 be the variables involved in clause
Ci. Then, (a) for all Vi, ¯Vi 2 I , we let Pa(Vi) = Pa( ¯Vi) = ;,
(b) Pa(Ci) = {Vi1, ..., ¯Vi3}, and importantly, (c) for all
2  i  n, we let Pa(Ci) = Pa(Ci) [ {Ci�1}.
• Pa(D0) = {Cn}.
• For all i = 1, ..., 2m+ n, Pa(Di) = {D0}
⇤ We populate the CP-tables of P0 as follows:
• For all Vi, ¯Vi, 1 � 0.
• For all Ci, we add the entry 1 � 0 for every assignment to
Pa(Ci) where there exists a k  3 such that all the following con-
ditions are satisfied: (1) Vi

k

6= ¯Vi
k

, (2) Vi
k

= 1 if xi
k

is in clause
j, OR Vi

k

= 0 if ¬xi
k

is in Cj , and (3) Ci�1 = 1 if i > 1. Add
entry 0 � 1 for all remaining assignments.
• For D0: if Cn = 1, we add the entry 1 � 0. Otherwise, 0 � 1.
• For all i = 1, ..., 2m + n, Di: if D0 = 1, 1 � 0. Otherwise,
0 � 1.
I For every j = 1, ...,m, we construct CP-nets Pj and ¯Pj . We
describe the construction of Pj below. The CP-net Pj has the fol-



lowing dependency graph (See Figure 6):
• For all 1  i  m, Pa(Vi) = Pa( ¯Vi) = ;. For all 1  i  n,
Pa(Ci) = ;.
• Pa(D0) = {Vj}.
• For all i = 1, ..., n+m, Pa(Di) = {D0}
⇤ We populate the CP-tables of Pj , 1  j  m as follows:
• For all Vi, ¯Vi, 0 � 1.
• For all Ci, 0 � 1.
• For D0: if Vj = 1, 1 � 0. Otherwise, 0 � 1.
• For all i = 1, ..., n + m, Di: if D0 = 1, 1 � 0. Otherwise,
0 � 1.

The construction of ¯Pj differs only in ¯Vj taking the place of Vj

in the above description.

V1 ¯V1
... Vi

...
¯Vm

pref.
0 � 1

C1 ... Cn
pref.
0 � 1

D0

Vi pref.
0 0 � 1

1 1 � 0

D1

D0 pref.
0 0 � 1

1 1 � 0

... D2m+n

Figure 6: Construction of CP-nets Pj , 1  j  m in the proof of
Theorem 8. CP-nets ¯Pj are constructed in a similar manner.

) Let F be a satisfiable instance of 3-SAT and � be an assign-
ment to the Boolean variables that satisfies F . We start by showing
that when F is satisfiable, for every assignment ~d, LG(P, ~d) >

2

2m+n � 1. First, consider any decision ~d such that dD0 = 1.
By construction of the CP-net P0, there is a sequence of improving
flips from ~d to the assignment~1. By construction of P0, there exists
a sequence of improving flips from~

1 to every ~d0 where one or more
of dD1i2m+n

= 0. Therefore, by construction of P0, any such ~d

has loss LG(Pi, ~d) � 2

2m+n. Now, consider any decision ~d where
for some 1  i  m, dV

i

= 1. If dD0 = 0, then by the con-
struction of CP-net Pi, LG(Pi, ~d) � 2

2m+n. Lastly, consider the
decision ~

0. By construction of P0, there is an improving sequence
to an assignment ~d0 such that if �i = 1, d0V

i

= 1, d0V̄
i

= 0, and if
�i = 0, d0V

i

= 0, d0V̄
i

= 1. Again, by construction there is an im-
proving sequence ~d1, ..., ~dn where each of C1, ..., Cn are flipped to
1 in turn. Finally, there is an improving sequence to every ~d00 where
any or all of d00D0i2m+n

= 1. Therefore, LG(P0,~0) � 2

2m+n.
This completes the proof that if F is satisfiable, then for every de-
cision ~d, LG(P, ~d) > 2

2m+n � 1.
( Suppose for the sake of contradiction that F is unsatisfiable

and LG(P,~0) > 2

2m+n � 1. Note that by construction, for ever
1  i  m, LG(Pi,~0) = 0 and LG(

¯Pi,~0) = 0. Then, it must be
that LG(P0,~0) > 2

2m+n � 1 i.e. that all the loss is contributed by
the CP-net P0. However, the loss contributed by improving flips in
variables Vi, ¯Vi, Ci is exactly 2

2m+n � 1. Therefore, there must
be a sequence of improving flips involving an flip in the value of
one of the variables D0, ..., D2m+n. Consider any such sequence
S. There must be an assignment in S where Cn is first flipped
to 1, which must be preceded by assignments where C1, ..., Cn�1

are flipped to 1 in turn. As argued in the proof of Theorem 2, this
implies that F is satisfiable, a contradiction.

While the exact complexity remains open, it is easy to see that
the problem is in PSPACE, by the result in Theorem 2.

5.1 Axiomatic Properties
Let P be any profile. A voting rule r satisfies (i) anonymity, if

for every profile P 0 obtained by permuting the names of the vot-
ers, r(P 0

) = r(P ), (ii) category-wise neutrality [16], if for ev-
ery profile P 0 obtained by applying a set of permutations that each
permutes the elements in the domain of the same variable, the re-
sult r(P 0

) is the set of outcomes in r(P ) permuted in the same
way, (iii) consistency, if for every pair of profiles P 1, P 2, where
r(P 1

) \ r(P 2
) 6= ;, r(P 1

) = r(P 2
) = r(P 1 [ P 2

) , (iv) weak

monotonicity, if for every ~d 2 r(P ), and for every P 0 obtained by
replacing a CP-net C 2 P by a CP-net C0 where for some Xi,
the rank of di is raised in the CP-table entry corresponding to the
valuation dPa(X

i

) of variables Pa(Xi), it holds that ~d 2 r(P 0
).

THEOREM 9. For every loss function L in our framework, the

voting rule rL satisfies anonymity, category-wise neutrality, con-

sistency and weak monotonicity.

PROOF. (Sketch) Let N = {1, ..., n} be a set of agents. Let
P = (P1, ..., Pn) be a profile of CP-nets over I = {X1, ..., Xp},
where Pi represents the vote of agent i 2 N .
Anonymity. The set of CP-nets remains unchanged in the profile
obtained by permuting the names of agents.
Consistency. For any two profiles P 1, P 2, if ~d minimizes the loss
for P 1, P 2 individually, ~d minimizes the loss for P 1 [ P 2.
Category-wise neutrality. Let M = (M1, ...,Mp) be a collection
of permutations where each Mi only permutes D(Xi). Let P 0 be
the profile obtained by applying M to the CP-nets in P . Let C0

be a CP-net obtained by applying M to C. Let ~e be an assignment
obtained by performing an improving flip in, say, the value of Xi,
from an assignment ~d according to C. Let ~d0, ~e0 be assignments
obtained by applying M to ~d,~e respectively. It is easy to check that
~e0 can be obtained by an improving flip in Xi from ~d0 according
to C0. Therefore, L(C0, ~d0) = L(C, ~d), and if an assignment ~d

minimizes the loss w.r.t. loss function L for profile P , ~d0 minimizes
the loss w.r.t. P 0.
Weak monotonicity. Let ~d 2 rL(P ), and C be a CP-net in P . Let
C0 be obtained from C by increasing the rank of di in the CP-table
entry of Xi corresponding to the valuation Pa(Xi) = dPa(X

i

).
Let P 0 be obtained from P by replacing C with C0. It is easy to
check that for any ~d0 where ~d0Pa(X

i

) 6= ~dPa(X
i

), L(C0, ~d0) =

L(C, ~d0). For any ~d0 where ~d0Pa(X
i

) =

~dPa(X
i

), and d0i =

¯di,
L(C0, ~d0) > L(C, ~d0). For any ~d0 where ~d0Pa(X

i

) =
~dPa(X

i

), and
d0i = di, L(C0, ~d0) < L(C, ~d), and among these ~d minimizes the
loss w.r.t. C0. The contribution to the loss of ~d from every other
CP-net in P remains unchanged. Therefore, if ~d 2 rL(P ), then
~d 2 rL(P

0
).

6. SUMMARY AND FUTURE WORK
In this paper, we introduced the notion of loss functions to make

optimal decisions for PCP-nets and collections of CP-nets with
acyclic and possibly cyclic dependencies. The results for PCP-nets
are, to the best of our knowledge, the first of their kind. We also
introduced a new class of voting rules characterized by a loss func-
tion that computes the set of optimal loss minimizing decisions for
a profile of CP-nets. We characterized the computational complex-
ity of specific loss functions and showed that every loss function
in our framework satisfies desirable axiomatic properties. The full
space of reasonable restrictions and assumptions under which it is
possible to efficiently find optimal solutions remains to be explored.
We also intend to study social choice normative properties of mech-
anisms under our framework.
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ABSTRACT
While matching markets are ubiquitous, much of the work
on stable matching assumes that both sides of the market
are able to fully specify their preferences. However, as the
size of matching markets grows, this assumption is unreal-
istic, and so there is interest in understanding how agents
may use interviews to refine their preferences over alterna-
tives. In this paper we study a market where one side (e.g.
hospital residency programs) maintains a common prefer-
ence master list, while the other side (e.g residents) have
individual preferences which they can refine by conducting
a limited number of interviews. The question we study is
How should residents choose their interview sets, given the
choices of others? We describe a payo↵ function for this
imperfect information game, and show that this game al-
ways has a pure strategy equilibrium. Moreover, for certain
structures of residents’ utility there is a unique Bayesian
equilibrium in which residents interview assortatively: with
k interviews, each resident group rkj+1, ..., rkj+k interviews
with hospitals hkj+1, ..., hkj+k. For Borda-based linear util-
ity functions, this equilibrium only exists when two inter-
views are allowed. We show this equilibrium varies for other
utility functions, including exponential, and show general
results regarding when this equilibrium does and does not
exist.

1. INTRODUCTION
Real world matching problems are ubiquitous and cover

many domains. One of the most widely studied matching
problems is the canonical stable matching problem (SMP)
[11]. Finding a stable matching is key in many real-world
matching markets including college admissions, school choice,
reviewer-paper matching, various labor-market matching prob-
lems [21], and, famously, the residency matching problem,
where residents are matched to hospital programs via a cen-
tralized matching program (such as the National Residency
Matching Program, NRMP, in the United States) [24].

This notion of stability, where no one in the market has
both the incentive and ability to change their partner, has

Appears at: 4th Workshop on Exploring Beyond the Worst Case in
Computational Social Choice (EXPLORE 2017). Held as part of the Work-
shops at the 16th International Conference on Autonomous Agents and
Multiagent Systems. May 8th-9th, 2017. Sao Paulo, Brazil.

been empirically shown to be very valuable for real-world
markets. For example, centralized mechanisms that pro-
duced a stable match tended to halt unraveling in residency
matching programs, while unstable mechanisms tended to
be abandoned [24]. Many matching markets that produce
stable matches implement the Deferred Acceptance (DA)
mechanism, introduced in Gale and Shapley’s seminal pa-
per [11].

However, to guarantee stability, stable matching mecha-
nisms assume that participants are able to rank all their
options. Assuming that participants do not have any in-
formation burden or interviewing budget is simply not the
case in real-world markets: for example, in the NRMP in
2015, 27,293 positions were o↵ered by 4,012 hospital pro-
grams [22], however residents tend to apply to an average
of only 11 programs, spending between $1,000 to $5,000 [2].
This implies that, even if resident-proposing Deferred Ac-
ceptance (rp-da) is the mechanism used, residents must be
strategic about what hospital programs they choose to in-
terview with, as they cannot be matched to a program with
which they do not interview. Furthermore, by not carefully
choosing with whom to interview, residents face the possibil-
ity of not being matched at all. There is significant evidence
of this happening, as an aftermarket (SOAP) exists for the
NRMP; with SOAP having matched 1,129 positions to resi-
dents in 2015, or 4.14% of the initial available positions [22].
We thus wish to study interviewing equilibria, not stability,
for matching markets.

In spite of there being many examples where it is not
feasible for participants to specify full preferences over all
alternatives, there has been only limited work which has
addressed participants’ strategic considerations (notable ex-
ceptions include [6, 5, 16]). There similarly is little work
investigating how people people choose their interviews in
practice, though there is some work that suggests people
tend to interview assortatively (i.e., in tiers): the best can-
didates apply to the best schools/hospitals, and the worst
candidates apply to the worst schools/hospitals (e.g., [1]).

In this paper, using the residency matching problem as
a motivating example, we initiate a study of the equilib-
rium behavior of participants who must decide with whom
to interview, knowing they are participating in a central-
ized matching market running the resident-proposing de-
ferred acceptance algorithm. In particular, under the as-
sumption that hospitals maintain a master list, a commonly
known fixed ranking over all residents, and that residents



can interview with at most k hospitals, we study which sub-
set of hospitals residents will choose to interview and then
rank. Many real-world matching markets use master lists;
for example, university entrances in Turkey and China are
determined by test scores [12, 25], as is high-school choice in
Mexico City and Ghana [7, 1]. We further note that stating
our problem using master lists also provides results for other
problems: this problem can be re-contextualized as a serial
dictatorship mechanism with known picking order [3].

We first formalize a payo↵ function for any resident in this
game and show that a pure strategy equilibrium always ex-
ists under general conditions on the distributions and valua-
tion functions from which residents’ underlying preferences
are drawn. We then turn to investigating when assortative
interviewing forms an equilibrium, under various assump-
tions regarding residents’ preferences. We instantiate resi-
dents’ preferences as drawn from a �-Mallows model (i.e.,
resident’s idiosyncratic preferences are described by a noisy
universal ranking). Under this setting, we provide a condi-
tion that is su�cient (though not necessary) to guarantee
assortative interviewing. We further instantiate agents’ val-
uation functions using classes of scoring rules from the social
choice literature [4], for which there exists some evidence
suggesting they may approximate the structure of partici-
pants preferences [17, 19]. We study the interplay between
valuation-function structure, interview-budget size and as-
sortative interviewing. For small interviewing budgets (of
size 2 or 3), assortative interviewing may be an equilibrium
depending on the valuation functions of residents and if the
dispersion is not too large. However, for larger interviewing
budgets our results indicate that for a large segment of res-
ident preference structures, assortative interviewing is not
an equilibrium.

2. RELATED RESEARCH
While there is a large body of research on the problem

of finding stable matchings for various markets and mar-
ket conditions (including when master lists are present, e.g.
[13]), there has been significantly less work on the inter-
viewing problem in which we are interested. Interviews are
information-gathering activities and one research direction
has looked at interviewing policies which attempt to min-
imize the number of interviews conducted while ensuring
that a stable matching is found. Rastegari et al. showed
that while finding the minimal interviewing policy is NP-
hard in general, there are special cases where a polynomial-
time algorithm exists [23]. Drummond and Boutilier looked
at a similar problem, using minimax regret and heuristic ap-
proaches for interviewing policies [10] . Neither of these pa-
pers study strategic issues arising when agents get to choose
with whom they wish to interview.

Motivated by the college admissions problem, Chade and
co-authors have looked at how students may strategically
apply to colleges, where they assume that there is an agreed-
upon ranking of the colleges, but that students’ quality or
caliber is determined by a noisy signal [6, 5]. This work in-
vestigates how students decide where to apply in a decentral-
ized market. We instead focus on centralized matching mar-
kets which result in stable matchings. Coles et al. [8] discuss
signalling in matching markets. They assume that agents’
preferences are distributed according to some (restricted)
distributions, known a priori, and each agent knows their
own preferences. Firms can make at most one job o↵er, and

workers can send one signal to a firm indicating their inter-
est, paralleling, in some sense, a very restricted interviewing
problem. Under this setting, firms can often do better than
simply o↵ering their top candidate a job, though there are
also examples where signalling may be harmful [14]. Again,
the market structure in these works is quite di↵erent than
the centralized matching markets we are interested in.

The work most closely related to the problem in this paper
is by Lee and Schwarz [16]. They studied an interviewing
game where firms and workers (or hospitals and residents)
interview with each other in order to be matched. They for-
mulate a two-stage game where firms were required to first
choose workers to interview for some fixed cost. The in-
terview action reveals both workers’ and firms’ preferences,
which are then revealed to a market mechanism running
(firm-proposing) DA. They showed that if there is no coor-
dination then firms’ best response is picking k workers at
random to interview. However, if firms can coordinate then
it is best for them to each select k workers so that there
is perfect overlap (forming a set of disconnected complete
bipartite interviewing subgraphs). This result relies heavily
on the assumption that all firms and workers are ex-ante ho-
mogeneous, with agents’ revealed preferences being idiosyn-
cratic and independent. This assumption is very strong; for
the results to hold either agents have e↵ectively no infor-
mation about their preferences before they interview, or the
market must be perfectly decomposable into homogeneous
sub-markets that are known before the interviewing process
starts. In this paper we study a similar interviewing game,
but use a di↵erent (and we believe, more realistic) set of
assumptions on the structure and knowledge of preferences.

3. MODEL
There are n residents and n hospital programs. The set

of residents is denoted by R = {r1, ..., rn}; the set of hos-
pital programs is denoted by H = {h1, ..., hn}. We are
interested in one-to-one matchings which means that res-
idents can only do their residency at a single hospital, and
that hospitals can accept at most one resident. A match-
ing is a function µ : R [ H ! R [ H, such that 8r 2 R,
µ(r) 2 H [ {r}, and 8h 2 H, µ(h) 2 R[ {h}. If µ(r) = r or
µ(h) = h then we say that r or h is unmatched. A matching
µ is stable if there does not exist some (r, h) 2 R⇥H, such
that h �r µ(r) and r �h µ(h).

Both hospitals and residents have (strict) preferences over
each other, and we let H� and R� denote the sets of all
possible preference rankings over H and R respectively. We
assume that hospitals have identical preferences over all res-
idents, which we call the master list, �H . Without loss of
generality, let �H= r1 � r2 � . . . � rn where ri �H rj
means that ri is preferred to rj , according to �H . We fur-
ther assume that the master list is common knowledge to
all members of H and R. That is, all hospitals agree on the
preference ranking over residents and each resident knows
where they, and all others, rank in the list. While each resi-
dent, r, has idiosyncratic preferences over the hospitals, we
assume that these are drawn i.i.d. from some common dis-
tribution D , and that this is common knowledge. If resident
r draws preference ranking ⌘ from D , then hi �⌘ hj means
that hi is preferred to hj by r under ⌘. We assume there is
some common scoring function v : H ⇥H� 7! R, applied to
rankings ⌘ drawn from D such that, given any ⌘ 2 H� with
hi �⌘ hj , v(hi, ⌘) > v(hj , ⌘).



Critical to our model is the assumption that residents do
not initially know their true preferences, but can refine their
knowledge by conducting a number of interviews, not ex-
ceeding their interviewing budget k. We let I(rj) ⇢ H
denote the interview set of resident rj , and |I(rj)|  k
for some fixed k  n. Once rj has finished interviewing,
rj knows her preference ranking over I(rj). She then sub-
mits this information to the matching algorithm, resident-
proposing deferred acceptance (rp-da). The matching pro-
ceeds in rounds, where in each round unmatched residents
propose to their next favorite hospital from their interview
set to whom they have not yet proposed. Each hospital
chooses its favorite resident from amongst the set of resi-
dents who have just proposed and its current match, and the
hospital and its choice are then tentatively matched. This
process continues until everyone is matched. The resulting
matching, µ, is guaranteed to be stable, resident-optimal,
and hospital-pessimal [11]. This matching is also guaran-
teed to be unique, as stable matching problems with master
lists have unique stable solutions [13]. Thus our results di-
rectly hold for any mechanism that returns a stable match,
including hospital-proposing deferred acceptance, and the
greedy linear-time algorithm [13].

3.1 Description of the Game
We now describe the Interviewing with a Limited Budget

game:

1. Each resident r 2 R simultaneously selects an inter-
viewing set I(r) ⇢ H, based on their knowledge of D
and the hospitals’ master list �H , where |I(r)|  k.

2. Each resident, r, interviews with hospitals in I(r) and
discovers their preferences over members of I(r).

3. Each resident reports their learned preferences over
I(r) and reports all other hospitals as unacceptable.
Each hospital reports the master list to a centralized
clearinghouse, which runs resident-proposing deferred
acceptance (rp-da), resulting in the matching µ.

3.2 Payoff function for Interviewing with a Lim-
ited Budget

Let M be the set of all matchings, and let µ denote the
ex-post matching resulting from all agents playing the Inter-
viewing with a Limited Budget game. In order for resident
rj to choose their interview set I(rj) ⇢ H, she has to be
able to evaluate the payo↵ she expects to receive from that
choice, where the payo↵ depends on both the actual prefer-
ence ranking she expects to draw from D , the interview sets
of the other residents, and the expected matching achieved
from the mechanism as described. Crucially, we observe that
rj need only be concerned about the interview set of resident
ri when ri �H rj . If rj �H ri then, because we run rp-da,
rj would always be matched before ri with respect to any
hospital they both had in their interview set. Thus, we can
denote rj ’s expected payo↵ for choosing interview set S by:
urj (S) = urj (S|D , I(r1), ..., I(rj�1)).
Given fixed interviewing sets I(r1), ..., I(rj�1), and some

partial match m = µ|r1,...,rj�1
, we must compute the prob-

ability that m happened via rp-da. Let m(ri) denote who
resident ri is matched to under m. For any ri, there is a
set of rankings consistent with ri being matched with m(ri)
under rp-da (and the hospitals’ master list �H). Denote

this set as T (ri,m). Formally, T (ri,m) ✓ H� is:

T (ri,m) = {⇠ 2 H�|8h0 2 H s.t. h0 2 I(ri) ^ h0 �⇠ m(ri),

9ra s.t. ra �H ri ^m(ra) = h0}

Given the interviewing sets of residents r1, . . . , rj�1, the
probability of partial match m is

P (m|I(r1), ..., I(rj)) =
Y

ri2{r1,...,rj�1}

X

⇠2T (ri,m)

P (⇠|D). (1)

where P (⇠|D) is the probability that some resident drew
ranking ⇠ 2 H� from D .

Using Eq. 1, we can now determine the probability that
some hospital h is matched to rj using rp-da, when rj has
interviewed with set S, and has preference list ⌘. We simply
sum over all possible matches in which this could happen.
Because rp-da is resident optimal, and all hospitals have a
master list, any hospital that rj both interviews with and
prefers to h must already be matched. We formally define
the set of such matchings, M⇤(S, ⌘, I(r1), ..., I(rj�1)):

M⇤(S, ⌘, I(r1), ..., I(rj�1), h) =

{m 2 M |m(rj) = h; 8ri 2 {r1, ..., rj�1}m(ri) 2 I(ri);

and 8x 2 S, if x �⌘ h, 9ri 2 {r1, ..., rj�1} s.t. x 2 I(ri) and m(ri) = x}

Thus, the probability that h is matched to rj using rp-
da given ⌘, S, and the interviewing sets for all residents
preferred to rj on the hospitals’ master list is

P (µ(h) = rj |⌘, S, I(r1), ..., I(rj�1)) =
X

m2M⇤(S,⌘,I(r1),...,I(rj�1),h)

P (m|I(r1), ..., I(rj�1)).

(2)

For readability, we will frequently refer to
P (µ(h) = rj |⌘, S, I(r1, ..., I(rj�1) as P (µ(h) = rj |⌘, S). Fi-
nally, we have all of the building blocks to formally define
the payo↵ function. Recall that v(h, ⌘) is the imposed utility
function, dependent on ⌘: for any given ⌘, v(h, ⌘) is fixed.
Then, our payo↵ function is:

urj (S) =
X

h2S

X

⌘2H�

v(h, ⌘)P (⌘|D)P (µ(h) = rj |⌘, S, I(r1), ..., I(rj�1))

(3)

Intuitively, what the payo↵ function in Eq. 3 does is weight
the value for some given alternative by how likely rj is to be
matched to that item, given the interview sets of the “more
desirable” residents, r1, . . . , rj�1.

As an illustrative example, imagine there are two resi-
dents, r1 and r2, each of whom have interviewed with hospi-
tals h1 and h2. Resident r1 will be matched with whomever
she most prefers, while r2 will be assigned the other. The
probability that r2 will be assigned h1 is simply the probabil-
ity that r1 drew ranking h2 � h1, while the probability that
r2 is matched to h2 is the probability that r1 drew ranking
h1 � h2.

3.3 Probabilistic Preference Models
While our payo↵-function formulation, described in the

previous section, is general in that we do not instantiate it
with a particular distribution function, we do assume that
some distribution is used over the space of possible rank-
ings of hospitals. The Mallows model is characterized by a
reference ranking �, and a dispersion parameter � 2 (0, 1],1

1A �-Mallows model is not well defined for � = 0, but if all
residents are guaranteed to draw the reference ranking, the
equilibrium is trivial.



which we denote as D�,�. Let A denote the set of alterna-
tives that we are ranking, and let A� denote the set of all
permutations of A (the index i 2 [1, n] in ai 2 A indicates
rank in �). The probability of any given ranking r is:

P (r|D�,�) =
�d(r,�)

Z

Here d is Kendall’s ⌧ distance metric, and Z is a normalizing
factor; Z =

P
r02P (A) �

d(r,�) = (1)(1 + �)(1 + �+ �2)...(1 +

...+ �|A|�1) [18].
As � ! 0, the distribution approaches drawing the refer-

ence ranking � with probability 1; when � = 1, this is equiva-
lent to drawing from the uniform distribution. The Mallows
model (and mixtures of Mallows) have plausible psychomet-
ric motivations and are commonly used in machine learning
[20, 15, 18]. Mallows models have also been used in previ-
ous investigations of preference elicitation schemes for stable
matching problems (e.g., [9, 10]).

To prove our equilibria results, we will need additional re-
sults regarding properties of Mallows models. To the best
of our knowledge, the following have not been stated previ-
ously, and may be of more general interest. Proofs omitted
due to space constraints

Lemma 1. Given some Mallows model D�,� with fixed
dispersion parameter � and reference ranking � = ai � aj ,
then the probability that a ranking ⌘ is drawn from D�,�

such that ai �⌘ aj is equal to drawing from some distribu-

tion D�,�0
where � is a prefix of �0. By symmetry, this proof

also holds when � is a su�x of �0.

Corollary 2. Given any reference ranking � and two
alternatives ai, ai+1, P (ai � ai+1|D�,�) = 1

1+�
.

Corollary 3. Given any reference ranking � and three
alternatives ai, ai+1, ai+2 and some ⌘ 2 {ai, ai+1, ai+2}�,
then the probability that we draw some ranking � consistent

with ⌘ is: P (�|D�,�) = �
d(⌘,ai�ai+1�ai+2)

(1+�)(1+�+�2)
.

Lemma 4. The probability ai will be ranked in place j is
�|j�i|

1+�+...+�n�1 .

Lemma 5. Let ⌘ 2 D�,� in which aj �⌘ ai for i < j, then

P (⌘) < �j�i

Z
.

4. GENERAL EQUILIBRIA FOR INTERVIEW-
ING MARKETS WITH MASTER LISTS

We provide an equilibrium analysis for the game presented
in Section 3. We first show that a pure equilibria for this
game always exists, even under arbitrary distributions and
scoring functions, but may be computationally infeasible to
directly calculate. We then instantiate this model for various
distributions and scoring functions, focusing on one family of
distributions: the �-Mallows model. We provide a necessary
and su�cient condition for assortative interviewing under a
Mallows model and then investigate what values of � and
k will result in assortative interviewing for various scoring
functions.

4.1 General Equilibria for Interviewing Mar-
kets with Master Lists

We start our analysis by studying the most general form
of the Interviewing with a Limited Budget game, and show
that a pure strategy equilibrium always exists.

Theorem 6. A pure strategy always exists for the Inter-
viewing with a Limited Budget game.

Proof. We wish to show that if every resident chooses
their expected utility maximizing interviewing set, this forms
a pure strategy. Given any resident rj who is jth in the hos-
pitals’ rank ordered list, rj ’s expected payo↵ function only
depends on residents r1, ..., rj�1. As rj knows that each
other resident ri is drawing from distribution D i.i.d., she
can calculate r1, ..., rj�1’s expected utility maximizing in-
terview set, using Eq. 3. Her payo↵ function depends only
on D and I(r1), ..., I(rj�1), both of which she now has. She
then calculates the expected payo↵ for each

�
n
k

�
potential in-

terviewing sets, and interviews with the one that maximizes
her expected utility.

We note that Theorem 6 is an existence theorem and does
not provide any additional insight into the equilibrium be-
havior, nor does it provide guidance as to how such an equi-
librium might be computed. Our next result begins to pro-
vide some intuition as to equilibrium behavior. In particular
it shows that if residents have interviewing budgets of size
k and the equilibrium behavior for resident rk is to inter-
view assortatively (i.e. it chooses to interview with hospitals
h1, . . . , hk), then assortative interviewing is the equilibrium
strategy for all residents.

Proposition 7. Given an interviewing budget of k inter-
views, some known distribution from which residents draw
their preferences D and a scoring function v, if resident
rk’s best response to all others interview assortatively is to
interview assortatively, then assortative interviewing is an
equilibrium for all residents.

(Proof omitted due to space constraints)

4.2 Interviewing Equilibria Under Mallows Mod-
els with Master Lists

In this section we instantiate the distribution from which
residents are drawing their preferences with a Mallows model
in order to gain a deeper understanding of the results from
the previous section. In particular, we provide a character-
ization of when assortative interviewing will form an equi-
librium for this class of resident-preferences. Before prov-
ing our main result, we require some additional lemmas ad-
dressing characteristics of assortative interviewing in Mal-
lows models.

All proofs are omitted due to space constraints.

Lemma 8. Given an interviewing budget of k interviews,
a dispersion parameter �, and a scoring function v, if res-
ident rk prefers interviewing with hospitals {h1, ..., hk} to
{h1, ..., hk+1} \ {hj} for all hj 2 {h1, ..., hk}, then for resi-
dent rk, interviewing with {h1, ..., hk} dominates interview-
ing with any other set of size k.

We now provide a necessary and su�cient condition for as-
sortative interviewing to hold when residents draw their
preference from a Mallows model with dispersion �. Let
P (hi avail) denote the probability that hospital hi is avail-
able for resident rk (i.e., residents r1, ..., rk�1 are all matched
to di↵erent alternatives). As we assume residents r1, ..., rk�1

interview assortatively, only one of {h1, ..., hk} will be avail-
able.



Lemma 9. Given an interviewing budget of k interviews,
a dispersion parameter �, and a scoring function v, if res-
idents r1, ..., rk�1 all interview assortatively (i.e., with hos-
pital set S = {h1, ..., hk}), satisfying the following inequality
for all hj 2 {h1, ..., hk} when S0 = S \ {hj}[ {hk+1} is both
su�cient and necessary to show that assortative interview-
ing is an equilibrium for resident rk:

P (hj avail)E(v(hj)|D�,�) �

P (hj avail)E(v(hk+1)|D�,�)+ (4)
X

⌘2H�

P (⌘|D�,�) ·
⇥ X

hi2S0
P (hi avail)�(hk+1 �⌘ hi)v(hk+1, ⌘)

⇤

Where �(hi �⌘ hj) is an indicator function that is 1 i↵
hi �⌘ hj , and 0 otherwise.

Theorem 10. Given an interviewing budget of k inter-
views, a dispersion parameter �, and a scoring function v,
satisfying the inequality found in Lemma 9 for all hj 2
{h1, ..., hk} is both su�cient and necessary to show that as-
sortative interviewing is an equilibrium for all residents.

Proof. This follows directly from combining Proposition
7 and Lemma 9.

We now provide a more simplified condition for assortative
interviewing, that is su�cient, though not necessary (and
leave the proof to the appendix):

Lemma 11. Given an interviewing budget of k interviews,
a dispersion parameter �, and a scoring function v, if res-
idents r1, ..., rk�1 all interview assortatively (i.e., with hos-
pital set S = {h1, ..., hk}), satisfying the following inequality
for all hj 2 {h1, ..., hk} when S0 = S \{hj}[{hk+1} is su�-
cient to show that assortative interviewing is an equilibrium
for resident rk:

P (hj avail)E(v(hj)|D�,�) �

P (hj avail)E(v(hk+1)|D�,�) +
X

hi2S0
P (hi avail)E(v(h0

k)|D
�,�0

)
�

Z(1 � �)

(5)

(Where �0 is equivalent to the reference ranking � with
one element hi s.t. hj �� hi removed, and h0

k is the kth
item in �0.)

Though we primarily discuss assortative interviewing as
it is a technique commonly used in real-world interviewing
markets, we note that the n/k complete disjoint bipartite
subgraph equilibrium shown in Lee and Schwarz for uniform
distributions on both sides of the market also holds when one
side is drawing uniform iid (equivalently, a Mallows model
with � = 1.0), and the other side has a master list.

Observation 12. When residents draw iid from uniform,
and hospitals have a master list, an equilibrium exists such
that the interviewing graph forms n/k complete disjoint bi-
partite subgraphs. Moreover, any resident rik+j interviews
with hospitals {h(j�1)k+1, . . . , hjk}.

5. ASSORTATIVE EQUILIBRIA FOR SMALL
BUDGETS

We now discuss assortative equilibria when participants’
interviewing budget is k  3. We do so by instantiating
specific scoring rules, and investigating under what circum-
stances assortative interviewing forms an equilibrium. We

now formally define Borda, plurality, and exponential scor-
ing rules, following definitions typically used in voting. We
define all scoring rules with a multiplicative factor of 1, and
an additive factor of 0, as these terms do not a↵ect the anal-
ysis. For any slot si, v(si) = n� i+ 1 in Borda, where n is
the number of alternatives in the market. Under plurality,
v(s1) = 1, v(si) = 0 for all i > 1. We investigate a class
of exponential functions that are dominated by the function
v(si) = ( "2 )

i�1, 1 > " > 0.
The proofs for the following two lemmas are omitted due

to space constraints

Lemma 13. If for a particular interviewer budget k, a dis-
persion parameter �, the condition of Lemma 14 is satisfied
for a plurality valuation function with a strict inequality,
then there are exponential valuations which form an assor-
tative equilibrium.

In particular, any exponential valuation dominated by ( "2 )
(i�1)

satisfies this condition, with " > 0 determined by k.

Lemma 14. A necessary and su�cient condition for as-
sortative interviewing under plurality is:

P (hj avail) � �k�j+1 (6)

This follows from instantiating plurality into Eq. 6, applying
Lemmas 7 and 4, and simplifying.

5.1 Assortative Interviewing with Two Inter-
views

We provide direct proofs showing that assortative inter-
viewing is an equilibrium for Borda and plurality. Exponen-
tial follows directly from Lemma 13.

Theorem 15. Given plurality as residents’ scoring func-
tion and a budget of k = 2 interviews, for a Mallows model
with dispersion parameter � such that 0 < �  0.6180, as-
sortative interviewing forms an equilibrium.

Proof. We begin by using the condition from Lemma 14.
We provide the calculation for h1; h2 follows analogously
(providing a bound of 0 < �  0.7549). We thus wish to
show conditions on � s.t. P (h1 avail) � �2,when resident
r2 is choosing their interview set. For r2, h1 is available
i↵ r1 happened to draw a ranking over her preferences s.t.
h2 � h1. Then, by Corollary 2, P (h1 avail) = �

1+�
, implying

we need to satisfy the equation �
1+�

� �2, which is true
whenever 0 < �  0.6180.

Theorem 16. Given Borda as residents’ scoring function
and a budget of k = 2 interviews, for a Mallows model dis-
persion parameter � such that 0 < �  0.2650, assortative
interviewing forms an equilibrium.

Proof. Because of Lemma 7, we only need to show that
assortative interviewing is an equilibrium when 0 < � 
0.265074 for resident r2, and it will hold for all ri. Fur-
thermore, by Lemma 8, we only need to prove that {h1, h2}
dominates both {h1, h3} and {h2, h3} to show that it domi-
nates all other possible interviewing sets of size 2.

We prove that choosing {h1, h2} is better than choosing
{h2, h3}, for all values of � such that 0 < �  0.265074.
We prove this by summing over all possible preference rank-
ings that induce a specific permutation of the alternatives
h1, h2, h3. We then pair these summed permutations in



such a manner that makes it easy to find a lower bound
for ur2({h1, h2}) � ur2({h2, h3}). This lower bound is en-
tirely in terms of �, meaning that for any � such that this
bound is above 0, it will be above 0 for any market size n.

We look at three cases, pairing all possible permutations
of h1, h2, h3 as follows:
Case 1: all rankings ⌘ consistent with h2 � h1 � h3 or ⌘0

consistent with h2 � h3 � h1;
Case 2: all rankings ⌘ consistent with h1 � h2 � h3 or ⌘0

consistent with h3 � h2 � h1;
Case 3: all rankings ⌘ consistent with h1 � h3 � h2 or ⌘0

consistent with h3 � h1 � h2.
Note that as we have enumerated all possible permuta-

tions of h1, h2, h3, these three cases generate every ranking
in H�. Furthermore, for any one of the three cases, we can
iterate over only all possible rankings ⌘ that are consistent
with the first member of the pair, and generate the ranking
⌘0 consistent with the second member of the pair by sim-
ply swapping two alternatives in the rank. Moreover, given
some ⌘, the number of discordant pairs in ⌘0 is simply the
number in ⌘, plus the number of additional discordant pairs
between h1, h2, h3 caused by swapping the two alternatives.

For clarity, let ur2({h1, h2})�ur2({h2, h3}) = U1+U2+U3,
where U1, U2, U3 correspond to our three cases. We also
introduce the notation Pµ(ri)(h) to denote the probability
that ri is matched to hospital h under matching µ. That
is, Pµ(ri)(h) = P (µ(ri) = h). The case proofs proofs are
omitted due to space constraints
Once considering all cases, we combine them together:

ur2 ({h1, h2})� ur2 ({h2, h3}) �
�2

(1 + �)(1 + �)(1 + �+ �2)
(1� �) +

2(�� �3 � �4)

(1 + �)(1 + �)(1 + �+ �2)

�
�

(1 + �)(1 + �)(1 + �+ �2)

� �

(1� �)4
+

1

3(1� �)3
+

2

3

�
(1 + �)

+
�2

(1 + �)(1 + �)(1 + �+ �2)
(1� �) (7)

Thus, Eq. 7 gives us a lower bound for the di↵erence in
expected utility between {h1, h2} and {h2, h3} for resident
r2, for all n. Using numerical methods to approximate the
roots of Eq. 7, we get that there is a root at 0, and a root
at � ⇡ 0.265074.

As the calculations are analogous, we omit the discussion
of their derivation, but it can be shown that:

ur2 ({h1, h2})� ur2 ({h1, h3}) �
1

(1 + �)(1 + �+ �2)

⇥
1 + �� 2�2 � 2�3 � 2�3� �

(1� �)4
+

1

3(1� �)3
+

2

3

�⇤
(8)

Using numerical methods, it can be shown that this is posi-
tive for 0 < � < 0.413633.

Thus, for the interval 0 < �  0.265074, we have shown
that r2’s best move in this interval is to interview with
{h1, h2}. Then, by Lemma 7, this is an equilibrium for all
ri as required.

5.2 Assortative Interviewing with Three Inter-
views

Unlike when only two interviews are present, assortative
interviewing is not an equilibrium under Borda when partic-

ipants have a budget of 3 interviews. Under plurality (and
exponential), assortative interviewing is still an equilibrium.

Theorem 17. Assortative interviewing is not guaranteed
to be an equilibrium under the Borda valuation function,
even for any �.

(Proof omitted due to space constraints)
Under Borda, an assortative interviewing equilibrium is

not guaranteed to exist, even for any 1 � � > 0. However,
we now show that assortative interviewing is an equilibrium
for plurality (and thus exponential) for k = 3:

Theorem 18. Given an interviewing budget of k = 3 in-
terviews, and the plurality scoring function, assortative in-
terviewing is an equilibrium for 0 < �  0.4655.

Proof. For k = 3, we simply check Eq. 6 from Lemma 14
with hj = h1, h2, h3. We find that the marginal contribution
from h1 is less than the marginal contribution of h2 or h3,
and thus only present the calculation for h1. We directly
compute P (h1 avail), by multiplying the probability that r1
did not take h1, and multiplying it by the probability that
r2 did not take h1, given that r1 also did not take h1. To
calculate this we enumerate the probabilities of any possible
rankings:

P (h1 avail) = P (µ(r1) 6= h1)P (µ(r2) 6= h1|µ(r1) 6= h1)

P (h1 avail) = (
�+ 2�2 + �3

(1 + �)(1 + �+ �2)
)(

�2 + 2�3

(1 + �+ �2)
)

Using numerical methods to find the roots of P (h1 avail)�
�3, we can show that Eq. 6 holds when 0 < �  0.4655.

6. ASSORTATIVE EQUILIBRIA FOR LARGE
BUDGETS

We begin by providing a few final results regarding prop-
erties of interviewing under Mallows models, including that
when there is a setting for which there is no assortative equi-
libria for plurality, then there is no valuation function with
assortative equilibria. We use this result to show that, for
su�ciently small � and a large enough budget of interviews
(k > 3), assortative interviewing cannot be an equilibrium
under any valuation function. We then provide a specific
counterexample for all � when k = 4 for plurality, implying
there is no assortative equilibrium for any valuation func-
tion. This suggests that, for a wide category of resident
valuation functions under Mallows, contrary to real-world
behavior, assortative interviewing is not an equilibrium.

Lemma 19. Given a Mallows model with dispersion pa-
rameter �, assortative interviewing for residents r1, ...., rk�1,
and a hospital hi 2 {h1, ..., hk} (i.e., the residents’ interview
set), then any profile ⌘1, . . . , ⌘n�1 2 D�,� of k�1 preferences
(for r1, . . . , rk�1) such that hi is available for rk has a prob-
ability of: P (r1 = ⌘1, r2 = ⌘2, . . . , rk�1 = ⌘k�1|hi avail) <
��

Zk�1 , where � =
Pk�i

j=1 j.

Proof. In order for hi to be available, there need to
be r0i+1, . . . , r

0
k with preference orders ⌘i+1, . . . , ⌘k 2 D�,�

such that they were assigned hospitals hi+1, . . . , hk. Hence,
hi+1 �⌘i+1 hi, . . . , hk �⌘k hi. According to Lemma 5, the

probability for each of these events is at least �
Z
, . . . , �k�i

Z
(respectively). Since they are independent of each other, and
since the maximal probability for any particular ⌘ 2 D�,�

is 1
Z
, the probability of a particular preference set occurring

in which hi is available is at least ��

Zk�1 .



Theorem 20. If for a particular interviewer budget k, a
dispersion parameter �, when using plurality valuation there
are no assortative equilibria due to h1 violating Lemma 9’s
condition, then for that k and � there is no assortative equi-
libria for any valuation function.

Proof. Looking at the condition of Lemma 9

P (hj avail)E(v(hj)|D�,�) �

P (hj avail)E(v(hk+1)|D�,�)+
X

⌘2H�

P (⌘|D�,�)
⇥ X

hi2S0
P (hi avail)�(hk+1 �⌘ hi)v(hk+1, ⌘)

⇤

We again begin by expanding the value expectation (E)This
can be divided to n di↵erent inequalities:

P (hj avail)P (hj in s1)v(s1) � v(s1)[P (hj avail)P (hk+1 in s1)+
X

⌘2H�|
hk+1 in s1

P (⌘|D�,�)
X

hi2S0
P (hi avail)�(hk+1 �⌘ hi)]

...

P (hj avail)P (hj in sn�1)v(sn�1) �
v(sn�1)[P (hj avail)P (hk+1 in sn�1)+

X

⌘2H�|
hk+1 in sn�1

P (⌘|D�,�)
X

hi2S0
P (hi avail)�(hk+1 �⌘ hi)]

P (hj avail)P (hj in sn)v(sn) � v(sn)P (hj avail)P (hk+1 in sn)

We shall show that under the theorem’s assumptions, none
of these inequalities hold for h1, and therefore the general
inequality (Lemma 9) does not hold.
Note that for each inequality we can simply ignore v(s`)

(1  `  n), since they appear on both sides of the inequal-
ity. The assumption of theorem is that first inequality does
not hold, i.e.,

P (h1 avail)P (h1 in s1) < P (h1 avail)P (hk+1 in s1)+
X

⌘2H�|
hk+1 in s1

P (⌘|D�,�)
X

hi2S0
P (hi avail)�(hk+1 �⌘ hi)

As shown in Lemma 4, for any 1 < `  k the probability
of h1 being in any spot s` is monotonically decreasing with
`, while the probability of hk+1 being in spot s` is monoton-
ically increasing with `. Hence, P (h1 avail)P (h1 in s1) >
P (h1 avail)P (h1 in s`). Similarly, P (h1 avail)P (hk+1 in s1) <
P (h1 avail)P (hk+1 in s`). We analogously see that:

X

⌘2H�|
hk+1 in s1

P (⌘|D�,�)
X

hi2S0
P (hi avail)�(hk+1 �⌘ hi) <

X

⌘2H�|
hk+1 in s`

P (⌘|D�,�)
X

hi2S0
P (hi avail)�(hk+1 �⌘ hi)

Simply put, the LHS gets smaller, while the RHS increases.
Hence, for 1  `  k:

P (h1 avail)P (h1 in s`) < P (h1 avail)P (hk+1 in s`)+
X

⌘2H�|
hk+1 in s`

P (⌘|D�,�)
X

hi2S0
P (hi avail)�(hk+1 �⌘ hi)

By Lemma 4, for any ` > k, P (h1 in s`) < P (hk+1 in s`)
which gives us:

P (h1 avail)P (h1 in s`) < P (h1 avail)P (hk+1 in s`) =)
P (h1 avail)P (h1 in s`) < P (h1 avail)P (hk+1 in s`)+

X

⌘2H�|
hk+1 in s`

P (⌘|D�,�)
X

hi2S0
P (hi avail)�(hk+1 �⌘ hi)

Starting with the assumption that assortative interview-
ing does not hold for plurality, we show that none of the
inequalities above hold for any slot s`, and therefore that
the condition in Lemma 9 does not hold for j = h1 for any
valuation function.

Theorem 21. Given an interviewing budget of k > 3 in-
terviews, there exists 0 < " < 1 s.t. for any scoring function
v no assortative interviewing forms an equilibrium for dis-
persion parameter � < ".

Proof. Thanks to Theorem 20, it is enough for us to
shown there is no assortative equilibrium under plurality
(and that h1 violates Lemma 9’s condition). We again be-
gin with the simplification from Lemma 14: P (hj avail) �
�k�j+1. Thanks to Lemma 19, we know P (hj avail) is of
the form:

P (hj avail) =
X(k)

Zk�1
�
Pk�j

i=1 i +
X1(k)

Zk�1
�1+

Pk�j
i=1 i + . . .+

X`(k)

Zk�1
�(k

Pk�j
i=1 i)�1 +

1

Zk�1
�k

Pk�j
i=1 i (9)

(X(k), X1(k), . . . , X`(k) are functions that calculate the num-
ber of di↵erent sets of possible preference orders for r1, . . . , rk,

with each set being of probability �
Pk�j

i=1 i for X(k),�1+
Pk�j

i=1 i for X1(k),
etc.)

When � ! 0, Zk�1 ! 1, and Equations 9 becomes

P (hj avail) ! X(k)�
Pk�j

i=1 i. In particular, there is "0, such

that P (h1 avail) < X(k)�(
Pk�j

i=1 i)�1, and there is " = min("0, 1
X(k) )

such that for � < ", for k > 3:

�k � �(
Pk�j

i=1 i)�2 > X(k)�(
Pk�j

i=1 i)�1 > P (h1 avail)

Contradicting our condition (Equation 6).

Moreover, we show that for k = 4, assortative interviewing
is never an equilibrium.

Theorem 22. Given an interviewing budget of k = 4 in-
terviews and any scoring function, assortative interviewing
is not an equilibrium for any dispersion parameter �.

Proof. We begin by instantiating the plurality valuation
function. By Theorem 20, if assortative interviewing is not
an equilibrium for plurality, it is never an equilibrium for any
scoring rule. As noted before Eq. 6 is tight, so if we compute
the marginal contribution from some h⇤ 2 {h1, h2, h3, h4},
and the contribution from h⇤ is strictly less than the con-
tribution from h5 for any �, assortative interviewing is not
an equilibrium for k = 4 and plurality. We find that the
contribution from h1 is less than the marginal contribution
from h4.

To calculate P (h1 avail), we simply iterate over all 6 pos-
sible allocations for r1, r2, r3 such that h1 is not taken, and
directly calculate the probabilities of each ranking profile for
r1, r2, r3 that allows that to happen. In the interest of clar-
ity, we only provide a symbolic representation. Let A be the
set of all permutations of h2, h3, h4, so that (a1, a2, a3) 2 A.

P (h1 avail) =
X

(a1,a2,a3)2A

P (µ(r1) = a1)P (µ(r2) = a2|µ(r1) = a1)

P (µ(r3) = a3|µ(r1) = a1, µ(r2) = a2)

We instantiate the above equation using the probabilities
of each potential match, and use numerical methods to show
the function P (h1 avail) � �4 is negative for any � in 0 <
�  1.



7. DISCUSSION
We investigate equilibria for interviewing (for example,

between residents and hospitals) with a limited budget when
a master ranked list (say, of residents) is known. We provide
a generic payo↵ function, that is indi↵erent to participants’
interviewing budgets, preference distributions, and scoring
functions. We show that a pure strategy interviewing equi-
librium always exists.

We then focus on this game for di↵erent scoring rules
(Borda, plurality and exponential scoring rules), when res-
idents’ preferences are independently drawn from the same
Mallows distribution. We find evidence that, for all scor-
ing rules investigated, interviewing budgets typically seen
in real-world markets do not admit assortative interviewing
equilibria, even though this is a strategy frequently played in
these markets. We do find that this is an equilibrium strat-
egy for small interviewing budgets, when residents’ prefer-
ences are su�ciently “similar” (i.e., low dispersion). More-
over, this assortative equilibrium strategy is a naturally aris-
ing equilibrium in which the maximum number of residents
are matched; namely, the residents interview assortatively
in tiers, forming a bipartite graph interviewing graph struc-
ture with n/k disconnected complete components. A similar
bipartite graph interviewing structure is present in the work
of Lee and Schwarz [16]. However, this structure naturally
arises in our model, and we characterize a very di↵erent pref-
erence space than the Lee and Schwarz paper, which investi-
gates the impartial culture model (i.e., a Mallows model with
� = 1, or uniform distribution). We also provide an equilib-
rium for impartial culture in markets with master lists.

We hypothesize the di↵erence in behavior seen in real-
world markets and the equilibria shown here could result
from a variety of factors. First, we only investigate assor-
tative interviewing under a �-Mallows model. As discussed
in Section 3.3, while under some circumstances the Mallows
model is viewed as a realistic model, it is possible partici-
pants’ preferences in these markets are not su�ciently de-
scribed by such a model. Another critical modeling assump-
tion in this work is that of master lists, though assortative
interviewing behavior is seen both in matching markets with
and without master lists.

We also assume perfectly rational actors. Both prospect
theory and quantal response equilibria could explain the dif-
ference in real-world behavior and the equilibria shown here.
Individuals tend to misjudge probabilities, overestimating
small probabilities, and underestimating near-certainties. (Per-
haps leading them to believe assortative interviewing is a
best response).

We hypothesize that, like in decentralized matching mar-
kets, the structure of the interviewing equilibria will contain
both “reach” and “safety” schools, where participants diver-
sify their interviewing portfolio to get both the benefit of
a desirable, unlikely option, and a likely, but less desirable
option. We find some evidence of this equilibrium in small
markets with Borda valuations. Figure 1, depicts a market
with 4 hospitals, 4 residents, and 2 interviews (n = 4, k = 2)
and shows the explicit trade-o↵ between high-value unlikely
alternatives, and more choice over alternatives. The figure
shows the exact payo↵ for each interviewing set, for given
dispersion �. As � increases, we explicitly see the trade-
o↵ between more choice, and a better expected payo↵ value
for individual alternatives. For su�ciently large �, choice
dominates individual expectations so that for r2, interview-
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Figure 1: r2’s expected payo↵ for interviewing with various
interviewing sets, as � goes from 0 to 1, n = 4.

ing {h3, h4} dominates interviewing with any other set. For
small �, interviewing with {h1, h2} dominates interviewing
with any other set.Interestingly, for � 2 [0.5, 0.6], r2’s best
option is to split the di↵erence, and interview with one hos-
pital (h3) he is guaranteed to get and one hospital (h2) that
will be available with su�ciently high probability, and has
a higher expected value. This choice available to r2 results
in some of the “reach” behavior we see in college admissions
markets; r3’s best response now is to interview with h1, h4

(i.e., a “reach” choice, and a “safe” bet). We hypothesize
that this “reach” and “safety” behavior is not only present
for larger � in markets with small interviewing budgets, but
also in markets with large interviewing budgets.

We hypothesize that results similar to the ones presented
in this paper hold for di↵erent scoring functions and prefer-
ence distributions (e.g., Plackett-Luce). Furthermore, the
results presented here only investigate one-to-one match-
ing markets. We believe that most of our results will di-
rectly hold for many-to-one markets where each hospital h
has known capacity qh. Another interesting future direction
would be to relax the assumption that interviewing with any
hospital has identical cost. In this regard, we wish to inves-
tigate equilibria when each resident has a known budget k,
and each resident r has some known cost cr(h) for interview-
ing with hospital h; residents must then choose an interview-
ing set S s.t.

P
h2S cr(h)  k. Perhaps the most important

direction for future work is relaxing the master list assump-
tion; we hypothesize that similar equilibria arise if prefer-
ences on both sides of the market are distributed according
to a Mallows model with low dispersion. We also believe this
work could lead to interesting questions in mechanism de-
sign, where the mechanism is a joint interviewing/matching
mechanism, with a limited budget for interviews explicitly
incorporated into the mechanism.
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ABSTRACT
We consider the following budgeted online assignment problem
motivated by crowdsourcing. We are given a set of o�ine tasks
that need to be assigned to workers who come from the pool of
types {1, 2, . . . , n}. For a given time horizon {1, 2, . . . ,T }, at each
instant of time t, a worker j arrives from the pool in accordance
with a known probability distribution [p

j t

] such that
P

j

p
j t

 1; j
has a known subset N ( j) of the tasks that it can complete, and an
assignment of one task i to j (if we choose to do so) should be done
before task i’s deadline. The assignment e = (i, j) (of task i 2 N ( j)
to worker j) yields a profit w

e

to the crowdsourcing provider and
requires di�erent quantities of K distinct resources, as specified by
a cost vector a

e

2 [0, 1]K ; these resources could be client-centric
(such as their budget) or worker-centric (e.g., a driver’s limitation on
the total distance traveled or number of hours worked in a period).
The goal is to design an online-assignment policy such that the total
expected profit is maximized subject to the budget and deadline
constraints.

We propose and analyze two simple linear programming (LP)-
based algorithms and achieve a competitive ratio of nearly 1/(`+1),
where ` is an upper bound on the number of non-zero elements in
any a

e

. This is nearly optimal among all LP-based approaches.
We also propose several heuristics adapted from our algorithms
and compare them to other non-LP-based algorithms over a large
set of random instances. Experimental results show that our LP-
based heuristics significantly outperform the non-LP-based ones,
sometimes by nearly 90%.
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Keywords
approximation algorithms; online algorithms; crowdsourcing mar-
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1. INTRODUCTION
Crowdsourcing markets (e.g., Amazon Mechanical Turk or Crowd-

flower) have evolved to be powerful platforms that bring together
task performers (or workers) and task requesters (or consumers). In
recent years, problems arising from online decision making in such

Appears at: 4th Workshop on Exploring Beyond the Worst Case in Com-
putational Social Choice (EXPLORE 2017). Held as part of the Workshops
at the 16th International Conference on Autonomous Agents and Multia-
gent Systems. May 8th-9th, 2017. Sao Paulo, Brazil.

settings have been attracting tremendous attention (see the survey
[37]). A typical problem arising in such settings, considered by [6],
is to schedule a batch of consumer tasks using a pool of workers
who become available in an online fashion (i.e., in real time). More
specifically, we are given a set I of o�ine tasks, where each task
i 2 I has a deadline d

i

after which it cannot be scheduled. Workers
arrive in an online fashion (according to an adversarial or random
permutation order) and submit bids on a subset of tasks that interest
them. When a worker j arrives, a decision must be made immedi-
ately and irrevocably - either assign it an available task or reject its
service. If the worker j is allocated a task i, we must pay the worker
their bid amount b

i j

. The goal is to maximize the number of tasks
assigned while constrained by a given bid budget of B. Our work
deals with a natural variant of this problem.

As per standard notation, we use [n] to denote the set of integers
{1, 2, . . . , n}. Further let us assume a time horizon [T]. In this work,
we model the arrival of workers as follows. At any given instant
of time (referred to as round) t 2 [T], a single worker is chosen
from a known pool of worker types [n] in accordance with a known
probability distribution [p

j t

] such that
P

j

p
j t

 11 (noting that
such a choice is made independently for each round t). Current re-
lated works in the domain of mechanism design for crowdsourcing
markets mainly model the arrival pattern of online workers as either
random arrival order (e.g., [7]) or known independent identical dis-
tributions (i.i.d) (e.g., [35, 36]). Our arrival setting can be viewed
a natural generalization in the way that we allow the arrival distri-
butions change over time. Notice that we do not consider if each
worker will submit her bid truthfully when designing the allocating
policy, which is one of the major concerns of mechanism design.

Another key distinction from the previous models is that we
consider multiple budget constraints. That is, we assume that there
are K distinct resources and that each assignment e = (i, j) has
a bid cost vector a

e

2 [0, 1]K , where the k th component of the
vector corresponds to the amount of resource type k needed by the
assignment. These resources could be task-requester-centric (such
as their budget) or worker-centric (e.g., a driver’s limitation on the
total distance traveled or number of hours worked in a period).
Resource k is called integral if a

e,k 2 {0, 1} for all e, otherwise
we refer to it as non-integral. We note that [6] set a constraint that
each task be assigned at most once, while [25] generalize it to the
setting where each task may be assigned at most b

i

2 Z+ times.
Putting this in context with our work, these settings can be viewed as
special cases of our setting as follows: each task itself is an integral
resource with budget either 1 or b

i

respectively.
Finally, instead of maximizing the throughput (i.e., number of

tasks completed), each assignment e is associated with a known

1Here we allow that with probability 1�P
j

p
j t

, none of the workers
is chosen at t.



weight or utility w
e

and we aim to maximize the expected utility
collected from those successful assignments. [25] consider the case
where the weights are unknown and must be learned, while workers
arrive online in a random permutation order.
Our Contributions. We deal with several theoretical and practical
aspects of the above budgeted online assignment problem (BOA),
under the assumption that the arrival distribution is known in ad-
vance. Before discussing our contributions, we define a couple of
useful parameters that can help appreciate our results better. Let
`1 (resp. `2) denote the maximum number of integral (resp. non-
integral) resources requested (in a non-zero amount) in any assign-
ment cost vector a

e

.
First, we consider the simple and natural case where all the re-

sources are integral and each assignment requests at most `1 = `
resources. We present two simple LP-based algorithms, ALG1 and
ALG2, that are non-adaptive and adaptive respectively. Here we
say an online algorithm is adaptive if it somehow incorporates all
information observed so far including online arrivals and outcomes
of previous strategies to design the current strategy. In Section 5,
we prove the following theorems.

Theorem 1.1. There exists an online non-adaptive algorithm ALG1
for the BOA problem with a competitive ratio of 1

`+1 (1 � 1
`+1 )` �

1
e(`+1) , assuming all the resources are integral.

Theorem 1.2. There exists an online adaptive algorithm ALG2 for
the BOA problem with a competitive ratio of (1� ")/(`+1), for any
given " > 0, assuming all the resources are integral.

Our competitive ratio analysis is tight for the non-adaptive algo-
rithm ALG1 (as shown in Example 5.2). In other words, Theorem
1.1 states the best possible ratio that ALG1 could get. Another no-
table point is that ALG2 is nearly optimal among all LP (4.1)-based
approaches, i.e., all possible algorithms using the LP (4.1) as a
benchmark, since it has an integrality gap at least ` � 1+ 1/` ([21]).
The main technical challenge facing us is to lower bound Pr[^

k

S
k

]
for a certain family of negatively correlated events {S

k

}. We de-
velop two di�erent useful techniques (see Section 5.2 and 5.3) to
tackle this challenge and use them to prove the optimality of our
analyses.

Subsequently, we consider the general case of resources being
both integral and non-integral (see Section 6) and show that the
above theorems (i.e., Theorem 1.1 and 1.2) can be readily applied
assuming that the budget of any non-integral resource is at least
moderately large enough. More precisely, we prove these two theo-
rems. Let B be the minimum budget for any non-integral resource.

Theorem 1.3. For the BOA problem, ALG1 yields a competitive
ratio of 1

`1+1
⇣
(1 � 1

`1+1 )`1 � "
⌘
, for any " > 0, assuming B �

2 ln( `2
" )

⇣
1 + 3`1+2

`2
1

⌘
+ 2.

Theorem 1.4. For the BOA problem, ALG2 yields a competitive
ratio of 1�2"

`1+1 for any given " > 0, assuming B � 3 ln( `2
" )(1+ 1

`1
)+2.

In the proof of Theorem 1.4, we apply the technique of vir-
tual algorithms to tackle the technical challenge of upper bounding
Pr[

P
i

X
i

� (1 + �)E[
P

i

X
i

]] for a family of positively correlated
random variables {X

i

2 [0, 1]}. Our results show that the knowl-
edge about arrival distributions holds a significant edge over the
adversarial model or the random permutation model. Let us com-
pare our results with those of [6]. As discussed before, their setting
fits our model when `1 = `2 = 1. From Theorem 1.4, we obtain a
( 1

2 � ✏ ) competitive ratio assuming B � 12 ln(1/✏ ) while [6] obtain
a ratio of O( 1

R

✏ ln R

), assuming B � R

✏ and R ⌘ max bi, j

min bi, j
(i.e., the

ratio of the largest bid to the smallest bid over all possible assign-
ments). In fact, we completely remove the dependency on R and
obtain a constant ratio while relaxing the lower bound assumption
on B significantly. Our result may be seen as theoretical evidence
to advocate the use of historical data to learn arrival distributions.

Finally, we propose various LP-based heuristics and evaluate
them against certain non-LP-based approaches. Our experiments
show that the LP-based approaches yield a far superior competitive
ratio compared to LP-blind approaches, sometimes by nearly 90%.

2. RELATED WORK
As an o�ine version of our model, the classic column-sparse

packing (CSP) problem has been well studied in the theoretical
computer science community. The basic setting is as follows: we
are given n items and K resources; each item i 2 [n] has a size vector
a
j

2 [0, 1]K and a profit w
j

> 0; given a budget B 2 RK+ , the goal
is to choose a subset of items such that the total profit is maximized
without violating the budget constraints. More generally, our o�ine
model is reduced to the Multidimensional Knapsack problem (MKP)
when there is no restriction on the sparsity of each size vector a

j

.
We see that the o�ine model such as MKP can fit our online model
as a special case when T = n and p

j t

= 1 i� j = t and 0 otherwise
for all j 2 [n], t 2 [T]. Note that we have more restrictions here:
we are not allowed to look at all the items before making decisions;
instead we have to make an instant irrevocable decision whenever
an item comes. Many common techniques such as permutation of
all items [8] and alteration [9] shown useful in the o�ine setting,
are not applicable to our online problems. Notice that any hardness
result from CSP problem will also apply here though.

We now briefly describe several recent results for the CSP prob-
lem. Let k be the column sparsity, i.e., the number of non-zero
entries in any column vector (this is equivalent to the parameter ` in
our BOA problem). For the general case when each a

j

2 [0, 1]K ,
[9] gave a randomized algorithm with the approximation ratio of
1/(ek + o(k)) and constructed an instance showing integrality gap
of even a strengthened LP to be at least 2k � 1. As a special case
of CSP when all a

j

are binary and B is integral, the k-set packing
problem is extensively studied before [11, 24, 26, 5]. Note that
[21] showed that the natural LP relaxation for k-set packing has
an integrality gap at least k � 1 + 1/k. [8] considered a stochastic
version where each a

j

is a binary-vector valued random variable
with each outcome having at most k non-zero elements. They ob-
tained a 2k-approximation algorithm. Further, they presented a
(k + 1)-approximation algorithm as well when each a

j

has mono-
tone outcomes. An important variant of the stochastic CSP problem,
known as the stochastic matching problem, arises with k = 2 and
has received considerable attention recently [14, 10, 1, 22].

As for our online model, there is a long line of research re-
lated to our problem: online bipartite matching and its variants,
which are motivated by applications to online advertisement busi-
ness. Two notable special cases, Adwords and Display Ads, have
been studied extensively in recent years: [13, 15, 16, 17, 18, 33].
Both these models can be modeled as each assignment consumes
only a single integral (Display Ads) or non-integral (Adwords) re-
source even though the potential number of distinct resources can
be huge. More recently, [28] considered a natural generalization
of Adwords, where there are multi-tier budgets forming a laminar
structure. Regarding the online arrival assumption, there are three
main categories: adversarial, random arrival order, and known dis-
tributions (see the book [32] for more details). A majority of the
recent work under known distributions, focuses on the case when
when the distributions in each round are independent and identical
(referred to as known i.i.d) [19, 23, 31, 27, 12]. We refer to another



variant of known distributions where the distributions can change
over rounds as the known adversarial. Note that this is the setting
we consider here and is more general compared to the known i.i.d as
descried before. For this setting, [4] considers the online stochas-
tic generalized assignment problem while [3] considers the online
prophet-inequality matching problem. Note that most of the current
online-matching models under known distributions can fit into our
model as a special case except the fact that some assume the cost
or bid is a random variable while we model it as deterministic here.
There are several papers considering online packing LP problem
as well under a random permutation order [29, 2]. To be specific,
[29] presented an algorithm achieving a (1 � ✏ )-competitive ratio,
provided B = ⌦(ln(`)/✏2), where B is the largest capacity ratio and
` is the cost-vector sparsity.

3. PROBLEM STATEMENT
In this section, we present a formal statement of our problem.

Let I = {i 2 [m]} be the set of o�ine tasks and J = { j 2 [n]} be
the set of online workers. On a finite time horizon T , each task
i has a deadline d

i

2 [T] after which it will become unavailable.
Let G = (I, J, E) be the bipartite graph that models the relation
between the tasks and workers: there is an edge e = (i, j) i� worker
j is interested in the task i. Let N ( j) = {i : (i, j) 2 E} be the set
of tasks that interest worker j and N (i) = { j : (i, j) 2 E} be the
set of workers who are interested in task i. Each edge e = (i, j)
has a weight w

e

denoting the profit obtained by assigning task i to
worker j. Each assignment e = (i, j) has a requirement for one or
more of a given set of K types of resources. The requirement of
an assignment e is given by a K-dimensional vector a

e

2 [0, 1]K ,
where the k th dimension a

e,k represents the amount of resource k
needed. Each resource type k has a budget B

k

2 R+ that must not
be violated. For each e, let S

e

= {k 2 [K] : a
e,k > 0}, i.e., the set

of resources it requests.
At any instant t 2 [T], a worker j arrives with a probability p

j t

such that
P

j

p
j t

 1 (thus, with probability 1�P
j

p
j, t , no worker

arrives at time t). Let E
j, t = {e = (i, j), i 2 N ( j) : d

i

� t} denote
the set of available assignments for the worker j at time t. In this
paper, we assume without loss of generality that each task can be
assigned for an arbitrary number of times before its deadline. Any
potential restriction on the number of assignments can easily be
modeled by an additional budget constraint: the task itself is an
integral resource and the corresponding budget is the upper bound
on the number of assignments. For each e 2 E

j, t , we say e is safe
or valid i� for each k 2 S

e

, resource k has remaining budget larger
or equal to a

e,k . When a worker j arrives at t, we have to make
an immediate and irrevocable decision: either reject it or choose a
safe option e 2 E

j, t 2 and get a resultant profit w
e

. Once a safe
assignment e is scheduled, the budget of each resource k 2 S

e

will
be reduced by a

e,k . Our goal is to design an online assignment
policy such that the expected profit is maximized.

In most applications, we need to deal with two kinds of resources,
namely integral and non-integral. A resource k is integral if a

e,k 2
{0, 1} for all e 2 E and B

k

2 Z+. On the other hand a resource k is
non-integral if a

e,k 2 [0, 1] and B
k

2 R+. This captures resources
such as money and time that cannot be quantified as integral. Let
K1 = {1, 2, · · · , K1} and K2 = {K1 + 1, · · · , K1 + K2} denote the
set of integral and non-integral resources respectively. As defined
in the introduction, for each assignment e, |S

e

\ K1 |  `1 and
|S
e

\K2 |  `2.

2In the case when some worker j can accept multiple assignments
each time, say L, we can simply add L copies of j to our graph G.

4. BENCHMARK LP
For an online algorithm ALG, the competitive ratio is defined

as the ratio of the expected performance of ALG to the expected
o�ine optimal over all possible realizations. A common technique
is to use an LP (we called benchmark LP) to upper bound the latter
value, thereby obtaining a lower bound on the competitive ratio.

Recall that E
j, t is the set of available assignments for a worker j

arriving at t. For any t, let E
t

=
S

j

E
j, t be the set of all available

assignments at t. Further, for each t and e 2 E
t

, let x
e, t be the

probability that we make the assignment e at t in the o�ine optimal
solution. Our benchmark LP can now be described as follows:

maximize
X

t

X

e2Et

w
e

x
e, t (4.1)

subject to
X

e2E j, t

x
e, t  p

j t

8 j 2 J, t 2 [T] (4.2)

X

t

X

e2Et

x
e, t a

e,k  B
k

8k 2 [K] (4.3)

0  x
e, t  1 8e 2 E, t 2 [T] (4.4)

Lemma 4.1. The optimal value to LP (4.1) is a valid upper bound
for the o�ine optimal.

Our benchmark LP is essentially the same as that used in [3] and
[4]. The detailed proof can be found there. We provide a rough
proof here.

Proof. The simple idea is to show that all the constraints in the above
LP are valid for the o�ine optimal. For each given t and worker j,P

e2E j, t
x
e, t can be interpreted as the sum of the expected number

of assignments related to j we could make in the o�ine optimal,
which is surely no larger than the probability that j comes at t. This
justifies constraints (4.2). Any o�ine algorithm should satisfy the
budget constraints as well and by linearity of expectation, we see
constraints (4.3) are valid. ⇤

5. THE CASE OF INTEGRAL RESOURCES
In this section, we consider the case when K2 = 0, i.e., all

resources are integral with a
e,k 2 {0, 1} and B

k

2 Z+ for all e 2 E
and k 2 [K]. Let `1 = `, i.e., each assignment requests at most `
(integral) resources.

As shown in Section 2, the k-set packing problem can be refor-
mulated as a special case here. Thus from [21], it follows that even
for the special case of unit budget, i.e., B

k

= 1 for all k 2 [K], LP
(4.1) has an integrality gap at least `�1+1/`. That implies by using
the LP (4.1) as the benchmark, we cannot get an online algorithm
achieving a ratio beating 1/(` � 1 + 1/`).

5.1 A simple non-adaptive algorithm
In this section, we present a simple LP-based non-adaptive algo-

rithm. Suppose {x⇤
e, t |t 2 [T], e 2 E

t

} is an optimal solution for the
LP (4.1). The main idea behind our algorithm (described in Algo-
rithm 1) is as follows: at each time t when some worker j arrives,
if safe make the assignment e 2 E

j, t with probability ↵x⇤
e, t/pj, t ,

where ↵ 2 (0, 1] is a parameter that will be optimized later.
We note that the last step of Algorithm 1 is well defined becauseP
e2Ê j, t

↵x⇤
e, t/pj t

 P
e2E j, t

x⇤
e, t/pj t

, which is at most 1.

Theorem 5.1. By choosing ↵ = 1
2` , ALG1 achieves an online

competitive ratio of at least 1
4` .

Proof. WLOG assume that t = T and fix an assignment e 2 E
T

.
Recall that S

e

is the set of resources requested by e. For each k 2 S
e

,



Algorithm 1: A simple non-adaptive algorithm (ALG1)
1 For each time t, assume some worker j arrives.
2 Let Ê

j, t ✓ E
j, t be the set of safe available assignments we can

make for j.
3 If Ê

j, t = ;, then reject j; otherwise sample at most one
assignment e 2 Ê

j, t with probability ↵x⇤
e, t/pj t

.

let S
k

be the event that e is safe at T with respect to a resource k.
We now lower bound the value Pr[^

k 2Se
S
k

]. Fix one such k 2 S
e

.
Let U

k

be the usage of resource k at the beginning of t = T and
X
e

0, t 0 be the indicator random variable for assignment e0 2 E
t

0

chosen at t 0 2 [T � 1]. We have U
k

=
P

t

0<T
P

e

0 2Et0 X
e

0, t 0a
e

0,k .
By definition, e is safe with respect to resource k i� U

k

 B
k

� 1.
Observe that E[X

e

0, t 0]  ↵x⇤
e

0, t 0 . By Markov inequality we see

Pr[U
k

 B
k

� 1] = 1 � Pr[U
k

� B
k

] � 1 � ↵ (5.1)

Thus we get

Pr[^
k 2Se

S
k

] = Pr
2666664
^

k 2Se

⇣
U
k

 B
k

� 1
⌘3777775
� 1 � `↵ (5.2)

So we get that for the given (e, t), e will be made with probability at
least ↵x⇤

e, t (1�`↵). By setting ↵ = 1
2` , we get that each assignment

e is made with probability at least x⇤
e, t/(4`). ⇤

5.2 A tight analysis for ALG1 with unit budget
In this section, we consider a special case when B

k

= 1 for all
k 2 K and show a tight analysis for ALG1. Consider the following
example.

Example 5.1. Consider an unweighted star graph G = (I, J, E)
where |I | = 1, |J | = 3, E = (e1, e2, e3) with T = 2 and d1 = T (no
deadline constraints). Suppose at t = 1, j = 1, 2 arrives with equal
probability 1/2 and at t = 2, j = 3 will arrive with probability 1.
Let e1, e2, e3 denote respectively the assignment we consider when
j = 1 comes at t = 1, j = 2 comes at t = 1 and j = 3 comes at
t = 2. Let K = 2 with B = (1, 1) and a

e1 = (1, 0), a
e1 = (0, 1) and

a
e3 = (1, 1). Suppose LP (4.1) o�ers us such an optimal solution:

x⇤
e1 = x⇤

e2 = 1/2 and x⇤
e3 = 1/2 (notice that unweighted). Let us

analysis the assignment e3 when j = 3 comes at t = 2 by running
ALG1.

According to ALG1, at t = 1 we will choose e
j

with probability
↵ whenever j = 1 or j = 2 comes. Notice that at t = 2, the first
and the second resource are each safe with respective probability
1 � ↵/2 and both of the two are safe with probability 1 � ↵. ⇤

The above example suggests us two things: (1) the events that
two di�erent resources are safe can be negatively correlated. This
means we can not apply the FKG inequality which is widely used in
the o�ine version [9, 8, 10] to replace the union bound in inequality
(5.2); (2) we could potentially strengthen the lower bound that each
resource is safe, which is currently obtained by Markov inequality
(5.1). Now we follow these ideas to present a tight analysis for ALG1
for the case of unit budget.

Theorem 5.2. By choosing ↵ = 1
`+1 , ALG1 has an online compet-

itive ratio of 1
`+1 (1 � 1

`+1 )` with unit budget.

Proof. As before, we consider the case that t = T and an assignment
e 2 E

T

. For each t 0 < T and k 2 S
e

, let E
k, t 0 = {e0 |e0 2 E

t

0, S
e

0 3

k} be the set of assignments which are available at t 0 and participate
in the budget constraint of k. Let B

k, t 0 be the (random) budget of k
at the beginning of t 0. Define A

k, t 0 = (B
k, t 0+1 = 1|B

k, t 0 = 1) and

A
t

0 = ^
k 2Se

A
k, t 0 =

⇣
^
k 2Se

B
k, t 0+1 = 1| ^

k 2Se
B
k, t 0 = 1

⌘

We see that

Pr[A
k, t 0] = 1�

X

e

0 2Ek, t0

↵x⇤
e

0, t 0, Pr[A
t

0] � 1�
X

e

0 2[k2Se Ek, t0

↵x⇤
e

0, t 0

It follows that

Pr[^
k 2Se

S
k

] =
Y

t

0<t

Pr[A
t

0] �
Y

t

0<t

*.
,
1 �

X

e

0 2[k2Se Ek, t0

↵x⇤
e

0, t 0
+/
-

(5.3)
The above inequality can be made tight when {E

k, t 0 |k 2 S
e

} is
disjoint for each t 0. Here are two useful observations. The first one
is

P
e

0 2[k2Se Ek, t0 ↵x⇤
e

0, t 0 
P

e

0 2Et0 ↵x⇤
e

0, t 0  ↵. The second one
is

X

t

0<T

X

e

0 2[k2Se Ek, t0

↵x⇤
e

0, t 0 
X

k 2Se

X

t

0<T

X

e

0 2Ek, t0

↵x⇤
e

0, t 0  ↵`

These two observations lead to the fact that the rightmost expression
of inequality (5.3) has a minimum value of (1�↵)` . Therefore e will
be made at t with overall probability x⇤

e, t↵(1 � ↵)` . By choosing
↵ = 1/(` + 1), we prove our claim. ⇤

The example below shows the above analysis is tight.

Example 5.2. Consider a star graph G = (I, J, E) where |I | =
1, |J | = ` + 1, E = {e

j

| j 2 [J]} with T = J. Let d1 = T , i.e.,
no deadline constraints. For each t 2 [T], p

j

= 1 if j = t and 0
otherwise. In other words, at each time t 2 [T], only worker j = t
will come surely and no one else. Suppose we use a

j

and x⇤
j

to
denote the terms a

e j and x⇤
e j , t= j

before. Let K = ` with B = 1
(dimension of K) and a

j

= e
j

for each j  `, where e
j

is the jth
standard-basis unit vector, and a

j

= 1 for j = ` + 1. Suppose LP
(4.1) o�ers us such an optimal solution: x⇤

j

= 1 � ✏ for each j  `
and x⇤`+1 = ✏ .

Now focus on the assignment e = e
J

when j = J comes at
t = T . Let us analyze the probability that e is safe at T , denoted by
Pr[S

e,T ], in ALG1 with some parameter ↵ 2 (0, 1). Notice that e
will be safe at t = T i� none of e

j

, j  ` is made before. According
to ALG1, each time t, e

j=t will be made with probability equal to
↵x

⇤
j

p j
= ↵(1 � ✏ ). That implies Pr[S

e,T ] = (1 � ↵(1 � ✏ ))` , which
matches our lower bound as shown in the proof of Theorem 5.2. ⇤

5.3 A tight analysis for ALG1 with general inte-
gral budget

In Section 5.2, we give a tight analysis for ALG1 for the case of
unit budget. Intuitively, we should be in a better situation when
each B

k

is larger than 1. For example, by the Cherno� bound, we
see that the probability that the usage of resource k at T overflows
B
k

should decrease exponentially as B
k

gets larger. In this section,
we give a tight analysis for ALG1 by extending the result in Theorem
5.2 to the case of general integral budget.

Let us present an equivalent but simpler model of our problem.
Suppose we have K types of balls and for each type k 2 [K], the
number of balls is B

k

2 Z+. We have a set of choices E = {e|e 2 E}
and each choice is associated with a binary vector a

e

2 {0, 1}K ,
which has at most ` non-zero elements. Once we make the choice
e, we will take one ball of type k whenever a

e,k = 1. For each



time t 2 [T], one choice e will arrive with probability x⇤
e, t such thatP

e2E x⇤
e, t  1 for each t. Each time t, for whatever choice comes,

we will accept it non-adaptively with some probability ↵ 2 (0, 1).
Consider a fixed choice e and t = T and let S

e

✓ K be the set of
types of balls choice e will take. For each k 2 S

e

, let S
k

be the
event that at t = T , we still have at least one ball of type k left. Our
question is that how the adversary minimize Pr[^

k 2Se
S
k

] subject
to the constraints (1)

P
t 2[T�1] x⇤

e, t a
e,k  B

k

for each k 2 S
e

and
(2)

P
e2E x⇤

e, t  1 for each t. The equivalence between this new
model and our original problem can be seen as follows: (1) each
assignment corresponds a choice here; (2) for some assignment e
with deadline t, we set x⇤

e, t 0 = 0 for all t 0 > t. Thus we can safely
ignore the deadline issue as far as ALG1 is considered.

Consider a given k 2 S
e

. Let E
k

= {e 2 E |a
e,k = 1} be the

set of choices e that participate in the resource constraint of k. Let
x⇤
k, t =

P
e2Ek

x⇤
e, t . Notice that x⇤

k, t  1 and at time t, one of
the choices in E

k

arrives with probability x⇤
k, t . Let A

k, t be the
indicator random variable that one of the choices in E

k

arrives at
t and A

k

=
P

tT�1 A
k, t , which denotes the random number of

arrivals of choices in E
k

over T � 1 rounds. For an integral A and
B, let p(A, ↵, B) ⌘ Pr[Z  B � 1] where Z ⇠ Bi(A, ↵) (binomial
distribution) and we assume p(A, ↵, B) = 1 for any 0  A  B � 1.
Now consider a given set A = {A

k

|k 2 S
e

}.

Lemma 5.1.

Pr[S
k

|A
k

] � p(A
k

, ↵, B
k

), Pr[^
k 2Se

S
k

|A] �
Y

k 2Se

p(A
k

, ↵, B
k

)

Proof. Consider a given k and A
k

. Given A
k

trials and each time
we take one ball independently with probability at most ↵. Thus we
end at at least B

k

� 1 balls with probability at least p(A
k

, ↵, B
k

).
Notice that the events {(S

k

|A
k

) |k 2 S
e

} are positively correlated
by the FKG inequality [20], which yields the second inequality. ⇤

Lemma 5.2.

Pr[^
k 2Se

S
k

] �
Y

k 2Se

exp
⇣
E

⇥
ln(p(A

k

, ↵, B
k

))
⇤ ⌘

Proof. First notice that Pr[^
k 2Se

S
k

] = E
A

f
Pr[^

k 2Se
S
k

|A]
g

by
conditioning on the event A. From Lemma 5.1, we see the latter
should be at least E

A

fQ
k 2Se

p(A
k

, ↵, B
k

)
g
. Thus

Pr[^
k 2Se

S
k

] = E
A

f
Pr[^

k 2Se
S
k

|A]
g
� E

A

2666664
Y

k 2Se

p(A
k

, ↵, B
k

)
3777775

= E
A

266664exp
⇣X

k

ln(p(A
k

, ↵, B
k

))
⌘377775 � exp

⇣X

k

E
⇥
ln(p(A

k

, ↵, B
k

))
⇤ ⌘

=
Y

k 2Se

exp
⇣
E

⇥
ln(p(A

k

, ↵, B
k

))
⇤ ⌘

⇤
The inequality in the second line to the third line is due to Jensen’s

inequality. Recall that A
k

=
P

tT�1 A
k, t where A

k, t is a Bernoulli
random variable indicating if a choice e 2 E

k

arrives at t. Notice
that E[A

k

] =
P

tT�1 x⇤
k, t  B

k

.

Lemma 5.3. For any ↵ 2 [0, 1
2 ] and integer B

k

� 1,

E
Ak

[ln(p(A
k

, ↵, B
k

))] � ln(1 � ↵)

We can show that in the worst scenario, the adversary will desig-
nate each A

k

as a Poisson random variable with mean B
k

such that
E
Ak

[ln(p(A
k

, ↵, B
k

))] gets minimized. The full proof of Lemma

5.3 can be seen in the full version. Now we have all ingredients to
prove Theorem 1.1.

Proof. The proof is very similar to that of Theorem 5.2. Consider a
given assignment e and t = T �1 w.l.o.g. Notice that ↵ = 1

`+1 
1
2 .

From Lemma 5.2 and 5.3, we see that Pr[^
k 2Se

S
k

] � (1 � ↵)` .
Thus by plugging in ↵ = 1

`+1 , we prove our claim. ⇤

5.4 Simulation-based adaptive algorithm
In this section, we present a simulation-based algorithm. The

main idea is as follows. Suppose we aim to develop an online
algorithm achieving a ratio of � 2 [0, 1]. Consider an assignment
e = (i, j) 2 E

t

when worker j arrived at some time t. Let S
e, t

be the event that e is safe conditioning on the arrival of e at t. By
simulating the current strategy up to t, we can get an estimation
of Pr[S

e, t ], say �
e, t , within an arbitrary small error. Therefore in

the case e is safe at t, we can sample it with probability xe, t
p j, t

�
�e, t

,
which leads to the fact that e is sampled with probability �x

e, t
unconditionally.

The simulation-based attenuation technique has been used to at-
tack other stochastic optimization problems as well such as stochas-
tic knapsack [30] and stochastic matching [1]. Assume for now
we can always get an accurate estimation �

e, t of Pr[S
e, t ] for all t

and e (It is easy to see that the sampling error can be folded into a
multiplicative factor of (1 � ✏ ) in the competitive ratio by standard
Cherno� bounds). The formal statement of our algorithm, denoted
by ALG2, is as follows.

Algorithm 2: Simulation-based adaptive algorithm (ALG2)
1 For each time t, assume some worker j arrives.
2 Let Ê

j, t ✓ E
j, t be the set of safe available assignments we can

make for j.
3 If Ê

j, t = ;, then reject j; otherwise sample an assignment
e 2 Ê

j, t with probability x

⇤
e, t

p j, t

�
�e, t

.

Note that �
e, t is the value of Pr[S

e, t ], which assumes to be
known exactly through simulation. To ensure the above algorithm
works with parameter �, it su�ces to show that �

e, t � � for all
possible t and e.

Lemma 5.4. By choosing � = 1/(` + 1), we have �
e, t � � for all

t 2 [T] and e 2 E
t

.

Proof. The proof is similar to that of Theorem 5.1. Consider a given
t and e 2 E

t

. Focus on a given k 2 S
e

and let U
k, t be the usage

of resource k at the beginning of t. For each t 0 < t and e0 2 E
t

0 ,
let X

e

0, t 0 be the indicator random variable that e0 is chosen at t 0.
Notice that U

k, t =
P

t

0<t X
e

0, t 0a
e

0,k .
Now we prove by induction on t. For the base case t = 1, we see
�
e, t = 1 for all e 2 E

t

. Thus we claim is valid. Assume our claim
works for all t 0 < t, which leads to the fact that for all e0 2 E

t

0 with
t 0 < t, e0 will be made at t 0 with probability exactly equal to x⇤

e

0, t 0�.
In other words, E[X

e

0, t 0] = x⇤
e

0, t 0�. Consider the event that e is safe
at t with respect to resource k. By Markov’s inequality, we have

Pr[U
k, t  B

k

� 1] = 1 � Pr[U
k, t � B

k

] � 1 � �
Thus we have

Pr[S
e, t ] = Pr

2666664
^

k 2Se

⇣
U
k, t  B

k

� 1
⌘3777775
� 1 � `� � �



The last inequality is valid since �  1/(` + 1). ⇤

The above Lemma validates ALG2. By manipulating the simula-
tion error in a proper way as shown in [1, 30], we can make sure that
final ratio will have a relative error at most " for any given " > 0.
Thus we prove our claim for Theorem 1.2. Note that the running
time will depend on 1/" polynomially.

6. EXTENSION TO COMBINED INTEGRAL
AND NON-INTEGRAL RESOURCES

Recall that K2 is the set of non-integral resources and for each
k 2 K2, all a

e,k 2 [0, 1]. Let B = min
k 2[K2] B

k

and we assume
B is large. In this section, we discuss how to extend the results
in Section 5 here when non-integral resources are added with the
large B assumption. In particular, we are interested in how large B
should be such that we lose at most ✏ in the competitive ratio. By
default we assume K1 , ; and `1 � 1.

6.1 Extension of ALG1
In this section, we analyze the performance of ALG1 with param-

eter ↵ = 1/(`1 + 1)  1/2 when non-integral resources are added.
Recall that in ALG1, each assignment e is made at t non-adaptively
with probability at most ↵x⇤

e, t . Let X
e, t,Ye, t indicate if e is made

at t and if e is safe at t respectively. Let Z
e, t indicate if e comes and

gets sampled at t when e is safe at t. Here we treat Z
e, t is Bernoulli

random variable with mean ↵x⇤
e, t and independent from Y

e, t in the
following way: when e comes at t while e is not safe, we continue
to set Z

e, t = 1 with probability ↵x⇤
e, t/pj, t and 0 otherwise, i.e.,

pretending e is safe. Observe that (1) X
e, t = Y

e, t Z
e, t  Z

e, t ;
(2) For any two random variables Z

e, t and Z
e

0, t 0 , the two will be
independent if t , t 0 and negatively correlated if t = t 0. Now we
start to prove Theorem 1.3.

Proof. Focus on a given t and an assignment e 2 E
t

. Let S1 =
S
e

\K1 and S2 = S
e

\K2. Let S
k, t be the event that e is safe with

respect to resource k at t. From the analysis of Theorem 1.1, we
see that Pr[^

k 2S1Sk, t ] � (1 � ↵)`1 . Now we focus on analyzing
the value Pr[^

k 2S2Sk, t ]. Let U
k, t be the usage of resource k at the

beginning of t, i.e., U
k, t =

P
t

0<t
P

e

0 2Et0 X
e

0, t 0a
e

0,k .
Notice that for each k 2 S2,

Pr[S
k, t ] � 1 � Pr[U

k

� B
k

� 1]

= 1 � Pr[
X

t

0<t

X

e

0 2Et0

X
e

0, t 0ae0, t 0 � B
k

� 1]

� 1 � Pr[
X

t

0<t

X

e

0 2Et0

Z
e

0, t 0ae0, t 0 � B
k

� 1]

Let H
k, t =

P
t

0<t
P

e

0 2Et0 Z
e

0, t 0ae0, t 0 . Notice that (1)E[H
k, t ] 

↵B
k

and (2) former discussion shows that {Z
e

0, t 0 |e0 2 E
t

0, t 0 <
t} are 1-correlated as defined in [34]. Thus from there, we can
e�ectively view them as “independent” and apply the Cherno�
bound to upper bound the value Pr[Z

k, t � B
k

�1]. WLOG assume
B
k

= B and we have

Pr[H
k, t � B � 1]  exp *,

�↵B( B�1
↵B

� 1)2

B�1
↵B

+ 1
+
-

= exp
 
�1 � ↵ � 1/B

1 + ↵ � 1/B
(B(1 � ↵) � 1)

!

 exp
 
�1

2
1 � ↵
1 + ↵

(B(1 � ↵) � 1)
!

To get the last inequality we assume B � 4. Thus

Pr[^
k 2S2Sk, t ] � 1 � `2 exp

 
�1

2
1 � ↵
1 + ↵

(B(1 � ↵) � 1)
!
⌘ 1 � ✏

We solve that it will su�ce B � 2 ln( `2
✏ )

⇣
1 + 3`1+2

`2
1

⌘
+ 2. In this

case, we get a competitive ratio of 1
`1+1

⇣
(1 � 1

`1+1 )`1 � ✏
⌘
.

⇤

6.2 Extension of ALG2
Suppose we aim for a competitive ratio of � = 1�✏

`1+1 for ALG2
where the multiplicative loss ✏ is due to the adding of non-integral
resources (we ignore all simulation errors first and handle them
later). This implies, for each time t and assignment e, we try to
maintain that e is made at t with probability equal to 1�✏

`1+1 . From
the analysis in Section 5.4, it would su�ce to show at each time t,
e is safe with probability �

e, t � �. Focus on a given assignment
e and let S

k, t be the event that e is safe at t with respect to the
resource k. Let S1 = S

e

\ K1 and S2 = S
e

\ K2. From the proof
of Lemma 5.4, we see that all integral resources are safe at t with
probability Pr[^

k 2S1Sk, t ] � 1� (1�✏)`1
`1+1 . Thus the remaining issue

is to show that Pr[^
k 2S2Sk, t ] � 1� ✏ , which by union bound leads

to the fact that �
e, t = Pr[^

k 2Se
S
k, t ] � � = 1�✏

`1+1 .
Section 6.1 shows that when B is large, all non-integral resources

are almost safe throughout T in ALG1 by applying Cherno� bound
and union bound. As for ALG2, the same analysis failed due to
the following challenges: (1) we cannot upper bound X

e, t by some
independent or negatively correlated Z

e, t as before; (2) {X
e, t } itself

can be positively correlated as shown in the following example.

Example 6.1. Consider an unweighted star graph G = (I, J, E)
where |I | = 1, |J | = 3, E = (e1, e2, e3) with T = 2. Suppose at
t = 1, j = 1, 2 arrives with equal probability p

j

= 1/2 and at t = 2,
j = 3 will arrive with probability p

j

= 1. Let e1, e2, e3 denote
respectively the assignment we consider when j = 1, 2 comes at
t = 1 and j = 3 comes at t = 2. Let K = 2 with B = (1, 1) and
a
e1 = (1, 0), a

e1 = (0, 1) and a
e3 = (0, 1). Suppose LP (4.1) o�ers

us the following optimal solution: x⇤
e1 = x⇤

e2 = 1/2 and x⇤
e3 = 1/2.

In our context, `1 = 1, � = 1/2 and ALG2 goes as follows: at t = 1,
e1 and e2 will be made with probability 1/2 when each comes; at
the beginning of t = 2, e3 is safe with probability � = 3/4 and
accordingly, it will be made with probability x

⇤
3

p3
�
� =

1
3 when it

comes.
Recall that X

e, t indicates if the assignment e is made at t. We can
verify that Pr[X

e1, t=1 = 1] = x⇤1/2 = 1/4 and Pr[X
e3, t=2 = 1] =

x⇤3/2 = 1/4. Pr[X
e3, t=2 = 1|X

e1, t=1 = 1] = 1/3, that is because e3
is safe with probability 1 at t = 2 conditioning on X

e3, t=2 = 1. ⇤

We use the technique of virtual algorithms to attack the potential
positive correlation among {X

e, t }. Suppose we run ALG2 with
some parameter � up to the time t such that for each e0 and t 0 < t,
Pr[X

e

0, t 0 = 1] = �x⇤
e

0, t 0 . Now we try to lower bound the value
�
k, t ⌘ Pr[S

k, t ] for a given e and k 2 S2 with S2 = S
e

\K2.
Consider the simple setting where only one non-integral resource

k is involved. Suppose we run ALG1 with parameter ↵ = �
1�� as

a virtual algorithm up to time t and let �0
k, t (�) = Pr[S0

k, t ] be the
probability that e is safe at time t with respect to resource k in the
virtual algorithm. Here � = o(1) when B ! 1.

Lemma 6.1. For any � with �0
k, t (�) � 1� �, we have �

k, t � 1� �.

Proof. Consider a feasible � with �0
k, t (�) � 1� �. For each e0 and

t 0 < t, let X 0
e

0, t 0 indicate that e0 is made at t 0 in the virtual algorithm.



We see Pr[X 0
e

0, t 0] =
�x⇤

e0, t0
1�� Pr[e0 is safe at t 0] � �x⇤

e

0, t 0 . Notice that
in our algorithm ALG2 with parameter �, each assignment e0 will
be made with probability equal to �x⇤

e

0, t 0 . Therefore we claim that
in ALG2, �

k, t = Pr[S
k, t ] � Pr[S0

k, t ] = �
0
k, t � 1 � �. ⇤

Now we have all ingredients to prove Theorem 1.4.

Proof. Focus on an assignment e and t. Ignore the simulation
error first and we try to show that when B � 3 ln( `2

✏ )(1 + 1
`1

) + 2,
Pr[S

k, t ] � 1 � ✏
`2

for each k 2 S2.
Lemma 6.1 tells us that we just need to find a feasible � such

that �0
k, t � 1 � �. In this case, we have Pr[S

k, t ] � 1 � � and
setting ✏ = `2� will complete the proof. Consider the virtual
algorithm ALG1 with parameter ↵ = (1�✏)/(`1+1)

1�� and let H
k, t =P

t

0<t
P

e

0 2Et0 Z
e

0, t 0ae0, t 0 where Pr[Z
e

0, t 0 = 1] = ↵ for each e0
and t 0 < t. Notice that Pr[S0

k, t ] � 1 � Pr[H
k, t � B � 1] and

E[H
k, t ]  ↵B. WLOG assume E[H

k, t ] = ↵B and `1 � 2. Let
� = B�1

↵B

� 1. We have

� = (1 � 1
B

)
(1 � �)(1 + `1)

1 � ✏ � 1

=
`1 + ✏ � � � �`1

1 � ✏ � 1
B

(1 � �)(1 + `1)
1 � ✏ � 1 � �

1 � ✏
⇣
`1 �

`1 + 1
B

⌘
� 1

The last inequality assumes that B � 3 � 1+ 2
`1�1 . Therefore by

the Cherno� Bound, we have

Pr[H
k, t � B � 1] = Pr

f
H
k, t � E[H

k, t ](1 + �)
g

 exp
 
�1

3
B(1 � ✏ )

(`1 + 1)(1 � �)
1 � �
1 � ✏

⇣
`1 �

`1 + 1
B

⌘!

= exp
 
�1

3
B
⇣
1 � 1

B
� 1
`1 + 1

⌘!

which implies that

Pr[S
k, t ] � Pr[S0

k, t ] � 1 � exp
 
�1

3
B
⇣
1 � 1

B
� 1
`1 + 1

⌘!

When B � 3 ln( `2
✏ )(1+ 1

`1
)+2, we can verify that the right-hand

side value at least 1 � � = 1 � ✏
`2

. Thus we prove our claim that for
each k 2 S2, Pr[S

k, t ] � 1 � ✏
`2

, which yields that ALG2 achieves
a ratio of (1 � ✏ )/(`1 + 1). After incorporating the simulation
error, we will have an additional multiplicative factor (1 � ✏ ) in the
competitive ratio. Thus we prove Theorem 1.4.

⇤

7. EXPERIMENTAL EVALUATION
In this section, we propose and evaluate a number of heuristic

algorithms for the BOA problem. We start with the case when only
integral resources are involved. Section 5 shows that non-adaptive
ALG1 and adaptive ALG2 can achieve a ratio of at least 1

`+1
1
e

and
1

`+1 respectively, where ` is the upper bound of integral resources
requested by each assignment. In our experiments, we show that the
performance is far better than these theoretical worst case bounds
(such bounds hold only for some extremely specialized cases such
as the one shown in Example 5.2).

Our experimental setup is as follows.

1. For each j, recall that N ( j) is the set of tasks that interest j.
We generate N ( j) by sampling each i 2 [m] independently
with some probability, say 0.3. We propose to study the
sensitivity to this parameter further in the future.

2. Let P1 be the arrival probability matrix of size n⇥T such that
P1(i, j) = p

i, j . We first generate a random “seed” matrix
P0 of size n ⇥ T1 such that for each t 2 [T1], the values in
the t th column of P0 are uniformly distributed over [0, 1]
conditioning on the column sum is 1, i.e.,

P
t

P0(i, t) = 1.
We achieve this by running the file “randfixedsum.m” due to
Roger Sta�ord 3. Once we have a fixed P0, we generate P1 by
sampling one column from P0 uniformly for T times. Notice
that if we generate P1 in the direct way as P0, then each j will
have almost the same arrivals over T rounds since T assumes
to be very large. In our case we set T1 = m ⌧ T and we
hope we can create some potential bias of the arrivals over all
j 2 [n] and that can pass to P1.

3. Let E be the set of assignments generated as shown in the first
point. For each assignment e 2 E, we independently choose
a uniform value w

e

2 [0, 1].

4. Recall thatK1 andK2 are the set of integral and non-integral
resources respectively. We generate a budget B

k

by uniformly
sampling an integer from [UB] = {1, 2, 3, . . . ,UB} for each
k 2 K1 and from [LB, 5 ⇤ LB] for each k 2 K2 respectively.
Here UB and LB are parameters specified in advance.

5. Recall S
e

is the set of resources requested by e. For each
e, we first generate a random permutation ⇡1 over K1 and
then set S

e

\ K1 as the first d⇢0 ⇤ K1e elements of ⇡1. Set
a
e,k = 1 for each k 2 S

e

\ K1. We then generate another
random permutation ⇡2 over K2 and set S

e

\K2 as the first
d⇢0 ⇤K2e elements of ⇡2. Sample a uniform value from [0, 1]
for a

e,k for each k 2 S
e

\K2. Here ⇢0 2 [0, 1] is a parameter
given in advance.

6. For each e, let d
e

be the deadline of e. We sample a random
integer from [T/2,T] uniformly as d

e

for each e 2 E. In this
experiment we consider a relative more flexible setting: allow
assignments with respect to a single task to have potentially
distinctive deadlines.

Let ALG1(↵) denote the algorithm shown in Section 5.1 with
parameter ↵. Theorem 1.1 shows that ALG1( 1

`+1 ) can achieve a
ratio at least 1

`+1
1
e

. Our experimental results suggest that it will
be too conservative for the choice of ↵ = 1

`+1 . This inspires us to
propose the following four heuristics. All these four algorithms are
non-adaptive essentially except the last one. Consider some time t
when j comes and let E

j, t = {e = (i, j) |i 2 N ( j), d
e

� t} be the set
of available (not necessarily safe) assignments related to j.

1. NAdap: sample an assignment e 2 E
j, t with probability

x

⇤
e, tP

e2Ej, t
x

⇤
e, t

. Make it i� e is safe.

2. ALG1(1): sample an assignment e 2 E
j, t with probability

x

⇤
e, t

p j, t
. Make it i� e is safe.

3. USamp: sample an assignment e 2 E
j, t uniformly from E

j, t .
Make it i� e is safe.

4. Greedy: choose the assignment e 2 E
j, t , which has the

largest weight w
e

among all safe options in E
j, t .

Remark: (1) the first two are both LP-based non-adaptive algo-
rithms; the third is non-adaptive but blind to the LP solution; the
last one is adaptive and blind to the LP solution as well, the strategy
3 https://www.mathworks.com/matlabcentral/fileexchange/9700-
random-vectors-with-fixed-sum/content/randfixedsum.m



gets updated as the set of safe options shrinks in later rounds; (2) the
second can be viewed as the first one plugged with an attenuation

factor
P

e2Ej, t
x

⇤
e, t

p j, t
 1. (3) we did not test ALG2 since the im-

plementation is really time-consuming even on moderate problem
size.

For each set of parameters P = (m, n, K1, K2,T,UB, LB, ⇢0), we
generate a set I(P) of 5 random instances as described before. For
each instance I 2 I(P), we run the above five algorithms each on I
for 100 times and take the mean as the final performance. For each
given instance I, let OPT(I) be the LP optimal value and ALG(I) be
the final performance on I. We define ⇢(ALG, I) = ALG(I)/OPT(I),
which is the ratio of performance of ALG to the LP value on I. For
each set of parameters P = (m, n, K1, K2,T,UB, LB, ⇢0), we gen-
erate 5 random instances as described before and set the mean ratio
as ⇢(ALG,P) for each ALG. The results can be seen in Figures 1, 2
and 3. The detailed discussion can be found in the full version.
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Figure 1: Performance of the four algorithms as UB increases
where: m = 10, n = 50, K1 = 90, K2 = 0,T = 3000, ⇢0 = 0.1. The
best LP-based heuristic ALG1(1) (red-colored) strictly beats the best
LP-blind strategy Greedy (blue-colored).
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ABSTRACT
Sticker Voting is a voting method where ballots are cast
by placing stickers on favored candidates. It di↵ers from
many other voting methods because the act of voting reveals
information to other players, which induces an asymmetry
of information available to subsequent voters. Voters may
strategize through both the choice of the submitted ballot
and the timing of its submission. In this paper, we introduce
and analyze a model for strategic voter behavior in Sticker
Voting. We find its equilibrium behavior and discuss how it
reflects human voting behavior.

1. INTRODUCTION
Because voting is a process that takes place over time,

there is an asymmetry of information that is available to
earlier and later voters. The ballots cast by earlier voters
inform subsequent voters. The latter may use this infor-
mation to vote strategically, maximizing their chances of
casting a pivotal ballot; The former may gain a first-mover
advantage, establishing their favorite candidate as a lead
runner by shaping what information is available to later vot-
ers. Strategic voters must decide not only which ballot to
cast, but also when to cast their ballot.

The U.S. presidential primaries is an example of such a
sequential procedure. The primaries determine each par-
ties’ presidential nominee, and are conducted as a series of
elections in each state. Each state-level election determines
how many delegates are sent in support of each nominee by
that state. States schedule their own primary dates. The
resulting elections are spread over several months. In 2016,
primaries began in February and ended in June, in prepa-
ration for the November election [1]. Both parties and indi-
vidual states recognize the importance of strategic timing.
Certain time slots are highly prized by both the Republican
and Democratic Parties. Both parties award bonus dele-
gates to states holding their elections later in the primary
season [4, 14].

Online polls are another domain which allows for strategic
timing. These polls are used as a social choice mechanism for
selecting anything from the cutest animal, to artistic direc-
tion for crowdfunded projects, to the winner of the Webby
People’s Voice award. A popular implementation of online

Appears at: 4th Workshop on Exploring Beyond the Worst Case in
Computational Social Choice (EXPLORE 2017). Held as part of the Work-
shops at the 16th International Conference on Autonomous Agents and
Multiagent Systems. May 8th-9th, 2017. Sao Paulo, Brazil.

polls is the popular group scheduling platform Doodle. Doo-
dle allows participants to approve or decline proposed time
slots. Importantly, Doodle supports open polls, which al-
low voters to view the ballots cast by previous voters before
committing their own, or waiting and revisiting the poll at
a later time.

In this paper, we propose the Sticker Voting framework,
where voters are invited to place a sticker (their ballot) on
their chosen candidate (which becomes common knowledge).
In addition to the potential for casting a strategic ballot, this
process also invites voters to be strategic in timing their
vote. We propose a model for strategic voter behavior that
incorporates strategic timing, and we analyze the strate-
gic equilibrium in a simple Sticker Plurality Voting game.
Finally, we discuss how we may use our model to capture
voting behavior in the real world.

2. RELATED WORK
In the social choice literature, Sequential Voting describes

a voting process (frequently based on plurality) where voters
cast their ballots in a particular order, and preceding ballots
become common knowledge. This is in contrast with Sticker
Voting, where the agent has a choice over the order of votes
and strategic timing is possible.

Callander examines “herding” and “bandwagon” e↵ects in
Sequential Voting as an information aggregation process [5].
Voters are asked to pick from two candidates, one of which
is objectively better than the other. Voters each receive
a private noisy signal, and cast their ballots sequentially,
based on their signal and preceding ballots. Callander shows
that the resulting election begins in an informative phase,
where ballots aggregate private signals of voters, but can
enter a cascade phase where all subsequent voters agree on
the current leading candidate. Alon et al. [2] further extend
this model by giving voters intrinsic utility for having voted
for the winner (in addition to selecting the better candidate).
Battaglini, Morton and Palfrey [3] show that in such a game
with costly votes and the possibility for abstention, early
voters bear a larger cost when they choose to contribute to
the information aggregation process.

Sandholm and Vulkan [15] examine bargaining games in
distributed systems where agents have externally imposed
deadlines. Prior to their deadline, agents may negotiate by
making o↵ers in continuous time. Interestingly, they find
that the sequential equilibrium behavior for the agents is
to wait until the deadline, at which point they will concede
fully. This is due to the informational e↵ect that accom-
panies making an early o↵er, which signals a weakness in



bargaining position. Moreover, an accepted o↵er shows that
the o↵erer has already conceded too much, and would have
been better o↵ by waiting.

Tal, Meir and Gal [16] study online human voting behav-
ior in response to poll information. They conduct experi-
ments on Amazon Mechanical Turk where participants are
given preferences (in the form of small monetary rewards)
for playing in a plurality voting game. The game may be
one-shot, where poll information is fictitious; or it may be
a game of Iterative Voting with other participants. Aside
from a small number of erratic voters (who act randomly),
most voters exercise either the “default” option (a truthful
ballot in the one-shot game, or maintaining the same ballot
in an iterated game), or utilized a myopic beset response.

Desmedt and Elkind [7] explore strategic behavior in Se-
quential Voting where voters may choose to abstain. They
show how the subgame perfect Nash equilibrium may be
computed, and show that when there are more than 3 can-
didates, the equilibrium behavior of voters are complex and
sometimes counterintuitive. The outcome of the election is
sensitive to the risk adversity of the voters, and the voter
order.

Gaspers, Naroditskiy, Narodytska, and Walsh [8] exam-
ine the possible and necessary winner problem in Sequential
Voting (which they term “social polls”) when conducted in
a social network setting. They find that the possible win-
ner problem is NP-hard to compute, but propose an e�cient
algorithm for finding necessary winners.

Xia and Conitzer [17] study strategic behavior of agents in
Sequential Voting (which they term “Stackelberg Voting”),
where voter preference and voting order are public knowl-
edge. The resulting voting game can be solved via backward
induction, and may result in highly suboptimal candidates
being selected.

Most relevant to our investigation of Sticker Voting is
by Dekel and Piccione [6], who examine Sequential Voting
where voting occurs in 2 periods, and voters are allowed to
choose the period in which they wish to vote. Their model
di↵ers from ours in that, this choice must be made prior

to the election, and prior to the realization of the voters’
own preferences. Under their model, Dekel and Piccione
find that all voters prefer to vote in the second period, mak-
ing the sequential outcome equivalent to the simultaneous
outcome.

Doodle recently emerged as a popular online poll platform
for group scheduling, allowing groups to perform approval
voting with open (public) or closed (private) ballots in real
time. Zou, Meir and Parkes [18] examine voting behavior
in over 340,000 polls. They find marked di↵erence in voting
behavior between open and closed polls. Moreover, they find
that in open polls, early voters behave di↵erently from later
voters, showing evidence of strategic reasoning based on the
additional information. Obraztsova, Polukarov, Rabinovich
and Elkind [12] propose the Doodle Poll Game capturing this
behavior, where users derive additional utility from appear-
ing to be available. Reinecke et al. [13] have also examined
how Doodle voting behavior may be a↵ected by national
culture and social norms.

3. STICKER VOTING MODEL
We consider a non-sequential voting game G with n voters

and m candidates M. Let B be the set of admissible ballots
a voter may cast, and Bn be the set of possible ballots cast by

the population of voters. Let F be a social choice function
mapping Bn to the set of winners, a non-empty subset of
M. Each voter v has a private utility function uv : 2M ! R
mapping each outcome to a utility value.

We define a Sticker Voting game based on G by specifying
a number of voting rounds T � 1. In each round, voters may
cast a ballot or choose to “Wait”; this choice is made simul-
taneously within each round. Once a voter casts a ballot,
it is committed and irreversible. Formally, in each round,
each voter plays an action from the action set B[{;}, where
; corresponds to “Wait” action. Once a voter casts a ballot
b 2 B, their action space for subsequent rounds is reduced to
the set {b}; we refer to this as moving from the controlled

game to the uncontrolled game. Let Ht 2 Bn denote
the set of actions played by agents in round t. The history
of play prior to current round t, Ht = (H1, H2, . . . Ht�1)
is common knowledge. The winner set is F(HT ), where ;
actions are interpreted as “Abstain”.

In round t, a voter may act according to a pure strategy
function S, which maps Ht to an action at 2 B [ {;}. S
maps to the action b if the agent entered the uncontrolled
game by casting ballot b 2 B in a prior round. We also allow
voters to play mixed strategies, which map Ht to a mixed
strategy, i.e. a distribution over B [ {;}.

We focus on Markovian strategies, where the voters do
not care about the history of ballots prior to the previous
round t� 1. A Markovian strategy S maps t and Ht�1 to a
mixed strategy.

3.1 Plurality Sticker Voting
In this paper, we focus on the Resolute Plurality Voting

Rule. Admissible ballots B are the candidatesM. For round
t, denote the standing st as a vector whose i-th element
corresponds to the number of ballots supporting candidate
i in Ht�1, or the zero vector if t = 1. The social choice
function F maps the final votes HT to the unique candidate
i with the highest siT , breaking ties uniformly at random.

We consider Markovian strategies that are also anony-
mous to other voters. In round t, while in the controlled
game, an agent’s strategy simply maps t and st to a mixed
strategy.

3.2 Solution Concept
The Sticker Voting Game uses the solution concept of the

Perfect Bayesian Equilibrium (PBE). PBE is a refinement of
Subgame Perfect Equilibrium (SPE) for sequential games.
In a SPE, players act according to strategies that form a
Nash equilibrium in every subgame of the original game.
PBE additionally allows players to have incomplete informa-
tion, where certain nodes of the game tree are indistinguish-
able from each other to particular players; these are called
Information Sets. Players maintain beliefs corresponding to
the probability that they are in a particular node in the cur-
rent Information Set; their strategies are defined according
to these beliefs (and may depend on the history of play).
In the Sticker Voting Game, Information Sets correspond to
voters not knowing the types of the other voters.

In the Plurality Sticker Voting Game, the current round
and tally forms a tuple (t, st) that uniquely identifies the
information set for the player in the controlled game. Each
information set consists of nodes representing the possible
types that the remaining uncommitted voters may have.
The voter has a belief over the distribution of types of the



uncommitted voters.
A second set of nodes capture the uncontrolled games,

with a unique node for each round t and uncontrolled tally
st.

4. COMPLETE INFORMATION GAME
We first consider a simplified scenario with n = 3 voters,

{1, 2, 3}, with complete information, and m = 3 candidates,
{A,B,C}, in a T = 2 round game. Player 1 has preference
A � B � C; player 2, B � C � A; player 3, C � A �
B, forming a Condorcet cycle. Each player gains utility u1

if their favorite candidate wins, u2 utility for their second
choice, and 0 for their third choice, with u1 > u2 > 0.
We also require that 2u2 > u1 so that conceding to one’s
second place alternative is better than a three-way tie. The
types of all agents are public knowledge. The following table
summarizes the utilities:

Voter A B C
1 u1 u2 0
2 0 u1 u2

3 u2 0 u1

For simplicity of notation, we denote voter v’s favorite
candidate as bv,1, the second choice as bv,2, and so on. When
the v is clear from context, we omit v from the subscript.
We also use bv,i to denote the action where v votes for i. We
will actualize the utility values as u1 = 3 and u2 = 2.

Analysis: Final Round
Since the types are common knowledge, we use the more gen-
eral solution concept of the Subgame Perfect Equilibrium,
and use backward induction to solve the game. Without lost
of generality, we take the perspective of Agent 1.

We begin with the final round T . If the agent is still
in control, she may find the game in a number of di↵erent
states:
Case 1: 2 ballots for the same candidate.

Agent 1’s vote is irrelevant, and that candidate is selected
Case 2: 2 ballots for di↵erent candidates.

Agent 1 breaks ties in favor of the better option.
Case 3: 1 ballot for A

Agent 1 also votes A and gets A as the outcome.
Case 4: 1 ballot for B

Note that this ballot must be cast by Agent 2, since Agent
3 would never vote for B. In this scenario, we can break
down the utilities for the remaining players in the follow-
ing table. Entries indicate the winning candidate, with the
payo↵ for the row and column players in parentheses.

Agent 3
C A

Agent 1
A tie(5/3, 5/3) A(3, 2)
B B(2, 0) B(2, 0)

It is clear both agents will coordinate on action b1,1 =
b3,2 = A as other actions are strictly dominated, and we
may iteratively remove dominated strategies.
Case 5: Only Agent 3 has voted, for C = b1,3

We also break down utilities here:

Agent 2
B C

Agent 1
A tie(5/3, 5/3) C(0, 2)
B B(2, 3) C(0, 2)

By the same argument before, the two agents will coordi-
nate on selecting B.
Case 6: Only Agent 2 has voted, for C = b1,3

Since Agent 3 has not voted, this is actually Case 1 from
the perspective of Agent 3. That is, since C is Agent 3’s top
choice, Agent 3 will also vote C, secure it as the outcome.
Agent 1’s vote is irrelevant.
Case 7: No votes observed

Assuming each agent plays symmetric strategies, each out-
come is equally likely, giving an expected utility of 5/3.

Interestingly, Case 4 and Case 5 clearly show that there
is no straight forward first-mover advantage in this scenario.
Any agent that is the sole voter in the initial round, and
votes for b1, will force the remaining agents to coordinate in
the next round, and produce b3 as the outcome.

Analysis: Initial Round
Using backward induction, we determine the course of play
in the initial round. We assume symmetric play; that is,
each player v plays action bv,i with probability pi, i = ;, 1, 2,
0  p;, p1, p2  1 and p; + p1 + p2 = 1. We analyze the
expected utility for Agent 1 for each action.
Case 1: Agent 1 plays A

As we have established, if Agent 1 plays A and the other
agents plays ;, the other agents will coordinate to select
C, yielding 0 utility for Agent 1. However, Agent 1 may
potentially gain an advantage if the other agents choose not
to wait. The following table shows the outcomes and their
payo↵s for Agent 1, based on the actions of Agents 2 and 3.

Agent 3
C A ;

Agent 2
B tie(5/3) A(3) A(3)
C C(0) A(3) C(0)
; C(0) A(3) C(0)

The expected utility for voting b1 in the first round is

E(u|b1) = 5
3
p21 + 3p2 + 3p;p1 (1)

Case 2: Agent 1 plays B

Agent 3
C A ;

Agent 2
B B(2) B(2) B(2)
C C(0) tie(5/3) C(0)
; B(2) B(2) B(2)

The expected utility for voting b2 in the first round is

E(u|b2) = 2p1 + 2p; +
5
3
p22 (2)

Case 3: Agent 1 plays ;



Agent 3
C A ;

Agent 2
B B(2) A(3) A(3)
C C(0) A(3) C(0)
; B(2) A(3) ⇤(5/3)

The expected utility for Waiting in the first round is

E(u|b;) = 3p2 + 2p21 + 5p;p1 +
5
3
p2; (3)

Notice immediately that even when factoring in the possi-
bility of multiple agents voting in the initial round, Waiting
dominates voting A. So we conclude that p1 = 0.

Suppose we are at a symmetric mixed Nash Equilibrium,
then Agent 1 must be ambivalent over the actions in its
support (i.e. b2 and ;). So we may set equations (2) and (3)
equal, and solve.

Surprisingly, the symmetric mixed Nash Equilibrium strat-
egy for the initial round is for each agent to play b2 with

probability 0.2, and Wait with probability 0.8.

4.1 Rational Voter Behavior
In this simple, complete information game, rational voters

will never vote for their top choice in the first round. Instead,
they will vote b2 with probability 0.2, or otherwise Wait in
the first round. In the latter case, Agent 1 will vote for her
favorite candidate in the second round, unless both other
voters have committed their ballots and she must break a
tie in her favor; or Agent 3 casts the only ballot and has
voted for C, in which case Agent 1 votes for B.

5. INCOMPLETE INFORMATION GAME
Next, we consider an incomplete information scenario based

on the simple game above. As before, we have n = 3 vot-
ers {1, 2, 3} and m = 3 alternatives {A,B,C}. Players
may be one of three types: Type A players have preference
A � B � C; Type B, B � C � A; and Type C, C � A � B.
The possible types form a Condorcet cycle, but there is no
guarantee that such a cycle will exist in a particular real-
ization of types. Nature assigns a type to each player with
equal probability. Players know their own types, but do not
know the types of other players. The game will be played
over T � 2 rounds. We impose the same utility structure as
before.

Analysis: Final Round T

WLOG, we consider the game from the perspective of Agent
1, who is Type A. If we are in the final round of the controlled
game, with tally st, let the voters’ strategy S(t, st) be a
mixed strategy playing bi with probability pt,sti , where i 2
{1, 2, 3, ;}. We will omit the t and/or st from the superscript
where it is clear from context. Additionally, because voter
strategies are symmetric with respect to type, we adopt the
notational convenience of permuting the vector st so that its
i-th entry corresponds to the tally of the voter’s i-th favorite
candidate.
Playing b3 is strictly dominated, so by the iterated removal

of dominated strategies, p3 = 0 in all situations. Moreover,
since this is the final round, Waiting is strictly dominated
by voting b1, so p; = 0. Therefore, for any particular s,
ps1 + ps2 = 1. All probability values are bounded within
[0, 1].

Case 1: 2 ballots for the same alternative.
Agent 1’s vote is irrelevant, at that alternative is selected.

There are three outcomes, with utilities for Agent 1 being
3, 2 or 0.
Case 2: 2 ballots for di↵erent alternatives.

Agent 1 breaks ties in favor of the better option. There
are 6 outcomes here. Agent 1 may break the tie to gain her
top choice in 4 cases, and get her second choice in 2 cases.
Case 3: Agent 3 (WLOG) casts the only vote, for A = b1,1

Agent 1 also votes A and gets A as the outcome.
Case 4: Agent 3 casts the only vote, for B = b1,2

Agent 2 may be of one of three types. If Agent 2 is Type
B, then they will also vote for B. Agent 1’s vote is irrelevant,
and gets a payo↵ of 2. The following tables break down the
utility of Agent 1’s actions for the other two cases:

Utility breakdown if Agent 2 is Type A

Agent 2
A B

Agent 1
A A(3, 3) B(2, 2)
B B(2, 2) B(2, 2)

Utility breakdown if Agent 2 is Type C

Agent 2
C A

Agent 1
A tie(5/3, 5/3) A(3, 2)
B B(2, 0) B(2, 0)

Since Agent 2’s type is not known to Agent 1, neither
action is dominant. But we can calculate the expected utility
for each action.

E(u|b(0,1,0)1 ) =
1
3
(3p(0,1,0)1 + 2p(0,1,0)2 )

+
1
3
(
5
3
p
(0,0,1)
1 + 3p(0,0,1)2 )

+
1
3
(2) (4)

E(u|b(0,1,0)2 ) = 2 (5)

If there is a mixed equilibrium, then Agent 1 will be am-
bivalent over the two choices. We set equations (4) = (5),
and solve to obtain

p
(0,1,0)
1 =

4
3
p
(0,0,1)
1 � 1 (6)

We set aside this equation, and carry it forward to Case
5.
Case 5: Agent 3 casts the only vote, for C = b1,3

Agent 2 may be of one of three types. If Agent 2 is Type C,
then they will vote for C and Agent 1’s action is irrelevant,
and they get utility 0. The following tables break down the
utility of Agent 1’s actions for the other two cases:



Utility breakdown if Agent 2 is Type A

Agent 2
A B

Agent 1
A A(3, 3) tie(5/3, 5/3)
B tie(5/3, 5/3) B(2, 2)

Utility breakdown if Agent 2 is Type B

Agent 2
B C

Agent 1
A tie(5/3, 5/3) C(0, 2)
B B(2, 3) C(0, 2)

Since Agent 2’s type is not known to Agent 1, neither
action is dominant. But we can calculate the expected utility
for each action. As before, if we are at a mixed equilibrium,
we set the two expected utilities and solve to obtain

5p(0,0,1)1 � 1� p
(0,1,0)
1 = 0 (7)

More over, we can substitute equation (6) into (7) to ob-

tain p
(0,0,1)
1 = 0. But substituting this result back into Equa-

tion 6, we get p(0,1,0)1 = �1. A contradiction. So we are not
at a mixed equilibrium.

We then consider the pure strategy outcomes based on
the actions in Case 4 and Case 5. An agent who observes
(0, 1, 0) may play p

(0,1,0)
1 = 1 or p

(0,1,0)
2 = 1. In addition,

an agent who observes (0, 0, 1) has options p
(0,0,1)
1 = 1 or

p
(0,0,1)
2 = 1. There are four possible pure strategy combi-

nations, and we may calculate the expected payo↵ for each
player, in each scenario. For example, consider p

(0,1,0)
1 = 1

and p
(0,0,1)
1 = 1, where both players will play b1 regardless of

their observation. That means, if Agent 1 observed (0, 1, 0),
we will reach one of three possible outcomes: we elect A, B
or reach a Tie. Thus, the expected utility will be 20/9. We
repeat these calculations to formulate the outcomes in the
matrix below:1

Observes (0,0,1)

p
(0,0,1)
1 = 1 p

(0,0,1)
2 = 1

Observes
(0,1,0)

p
(0,1,0)
1 = 1 ( 209 , 14

9 ) ( 83 ,
4
3 )

p
(0,1,0)
2 = 1 (2, 1) (2, 2

3 )

Notice three of the pure strategies are dominated, leaving
only the top left cell as the unique symmetric Nash Equilib-
rium for the final round. This corresponds to the actions of
voting for the top choice regardless of the nature of

the single ballot observed. This nets an expected utility
of 20

9 if Agent 1 observed a ballot for her second choice, and
14
9 , for her third choice.
Case 6: No agent has cast any ballots, in which case Agent
1’s best response is to vote honestly and hope for the best:
1While this matrix resembles a normal form game, it is only
analogous to one. The rows and columns represent infor-
mation states that the players find themselves in, and the
actions they may take. The cell represents the payo↵ to the
player for a particular pure strategy the agents symmetri-
cally pursue.

p
(0,0,0)
1 = 1, with probability 5

9 of electing A, 2
9 of getting a

tie, 1
9 of getting B, and 1

9 of getting C. This results in an
expected utility of 61

27 .

Analysis: Preceding Round t

Now that we have an equilibrium analysis of the last round,
we extend our analysis to preceding rounds via backward
induction. Here, each agent has three actions, andWaiting is
not a clearly dominated action: p(0,0,1)1 +p

(0,0,1)
2 +p

(0,0,1)
; = 1,

and p
(0,1,0)
1 + p

(0,1,0)
2 + p

(0,1,0)
; = 1.

If Agent 1 takes the Wait action ;, she proceeds into the
information state (t+1, s+) of the controlled game, where s+

is obtained from st by adding a number of ballots up to an
including the number of uncommitted voters, representing
new ballots cast this turn by the other voters. If Agent 1
casts a ballot b, then she enters into the uncontrolled game
(t+ 1, s+) (see Appendix B).
Case 1: 2 ballots for the same alternative.

Agent 1’s vote is irrelevant.
Case 2: 2 ballots for di↵erent alternatives.

Agent 1 breaks ties in favor of the better option.
Case 3: Agent 3 (WLOG) casts the only vote, for A = b1,1

Agent 1 also votes A and gets A as the outcome.
Case 4: Agent 3 casts the only vote, for B = b1,2

As before, we may lay out the possible actions of each
agent, based on the possible types of Agent 2 (recall if Agent
2 is type B, the outcome is decided regardless of the actions
Agent 1):

Utility breakdown if Agent 2 is Type A

Agent 2
A B ;

Agent 1
A A(3, 3) B(2, 2) A(3, 3)
B B(2, 2) B(2, 2) B(2, 2)
; A(3, 3) B(2, 2) ⇤(H,H)

Utility breakdown if Agent 2 is Type C

Agent 2
C A ;

Agent 1
A tie(5/3, 5/3) A(3, 2) A(3, 2)
B B(2, 0) B(2, 0) B(2, 0)
; B(2, 0) A(3, 2) ⇤(H,L)

Importantly, the outcome designated as ⇤ represents the
outcome computed in the inductive step for the next round,
where the expected utility for a player who observes a ballot
for her second choice is H, or is L if a ballot for her last
choice is observed (H > L, and H > 2). If the current
round is t = T � 1, then H = 20

9 and L = 14
9 .

As before, we can write equations for expected utilities
and solve to show that b

(0,1,0)
2 is dominated by b

(0,1,0)
; , if

H � 2. We solve the remaining equalities in conjunction
with Case 5 below.
Case 5: Agent 3 casts the only vote, for C = b1,3

Agent 2 may be of one of three types. If Agent 2 is Type C,
then they will vote for C and Agent 1’s action is irrelevant,
and they get utility 0. The following tables break down the
utility of Agent 1’s actions for the other two cases:



Utility breakdown if Agent 2 is Type A

Agent 2
A B ;

Agent 1
A A(3, 3) tie(5/3, 5/3) A(3, 3)
B tie(5/3, 5/3) B(2, 2) B(2, 2)
; A(3, 3) B(2, 2) ⇤(L,L)

Utility breakdown if Agent 2 is Type B

Agent 2
B C ;

Agent 1
A tie(5/3, 5/3) C(0, 2) C(0, 2)
B B(2, 3) C(0, 2) B(2, 3)
; B(2, 3) C(0, 2) ⇤(L,H)

We formulate expected utilities as before. We utilize Gam-
bit [9] to solve this subgame for the t = T � 1 case, and find

that p
(0,0,1)
2 = 0. Using this information (see Appendix A

for details), we may solve the system of equations exactly to
obtain

p
(0,1,0)
; = � 3H � 3L� 1

24H � 3L� 71
(8)

p
(0,0,1)
; =

3H � 3L� 8
24H � 3L� 71

(9)

and expected utilities

E(u|b(0,1,0); ) =
4(41H � 6L� 121)
3(24H � 3L� 71)

(10)

E(u|b(0,0,1); ) =
117H � 19L� 333
3(24H � 3L� 71)

(11)

In particular, for t = T � 1 of the controlled game, when
observing (0, 1, 0), Agent 1 should vote b1 with proba-

bility p
(0,1,0)
1 = 64/67 (and Wait otherwise) for an ex-

pected utility of 2.34. When observing (0, 0, 1), she

should vote b1 with probability p
(0,0,1)
1 = 49/67 for an

expected utility of 1.53.
Case 6: No ballots observed.

If no ballots are observed, all agents are in the same in-
formation set, and we may assume they act symmetrically.
We denote the probability that they play their top choice,
second choice and Wait as p1, p2, and p;, respectively.

If Agent 1 Waits, then with probability p2;, we enter the
next round with the tally (0, 0, 0), which gives an expected
utility of N (N = 61

27 in round T � 1). With probability
2p;(1 � p;), we enter the next round with one other ballot
cast (uniformly randomly selected between the candidates);
each of these outcomes gives an expected utility of 3, H,
and L. Finally, with probability (1�p;)

2, both other agents
cast their ballots. There are 9 possible outcomes (all equally
likely); Agent 1 gains her top choice in 5 cases, her second
choice in 3 cases, and her last choice in 1 case. This gives
an expected utility of 7

3 . Therefore, the expected utility of
waiting is

E(u|b(0,0,0); ) = Np2; + 2p;(1� p;)
3 +H + L

3
+ (1� p;)

2 7
3

(12)

If Agent 1 votes for b1, then with probability p2;, we en-
ter the uncontrolled game (t + 1, (1, 0, 0)), with expected
utility U1 (see Appendix B). With probability 2p;(1 � p;),
one other agent has blindly voted, resulting in the vote vec-
tor (2, 0, 0) (utility = 3), (1, 1, 0) (utility = 8

3 )
2, or (1, 0, 1)

(utility = 1). Finally, with probability (1� p;)
2, both other

agents have blindly voted, giving a utility of 61
27 .

Thus, the expected utility for this action is

E(u|b(0,0,0)1 ) = U1p
2
; +

40
9
p;(1� p;) + (1� p;)

2 61
27

(13)

By a similar set of calculations, we get the expected utility
for casting a b2 ballot is

E(u|b(0,0,0)2 ) = U2p
2
; + 4p;(1� p;) + (1� p;)

2 49
27

(14)

where U2 is the expected utility from the uncontrolled
game (t + 1, (0, 1, 0)), and U2 < U1. Notice E(u|b(0,0,0)2 ) is

smaller than E(u|b(0,0,0)1 ) for all values of p0. Therefore, we

may assume p
(0,0,0)
2 = 0, and p

(0,0,0)
1 + p

(0,0,0)
; = 1.

Let us consider the di↵erence of expected utility from the
remaining two options:

E(u|b(0,0,0)1 )� E(u|b(0,0,0); )

= (U1 �N +
2
3
(H + L)� 68

27
)p2; + (

70
27

� 2
3
(H + L))p; � 2

27
(15)

Clearly, if p; = 0, this would result in a negative value
and E(u|b(0,0,0)1 ) < E(u|b(0,0,0); ), which is a contradiction.
So we know that regardless of the values of H and L, there
is a non-zero probability that an agent Waits.

If t = T � 1, then N = U1 = 61
27 and H + L = 34

9 ,
which zeroes out the p20 term, and (15) becomes 2

27 (p; � 1).
Therefore, p; = 1 and Agent 1 waits.

We carry forward the induction to t = T � 2. N = 61/27
U1 = 2.1739 and H + L = 3.8723. Equation 15 becomes
1/27(�2+0.2986p;�0.6033p2;), which is negative for all val-

ues of p;. Thus, E(u|b(0,0,0)1 ) < E(u|b(0,0,0); ), and so Agent
1 waits as well. Trend continues in further rounds of induc-
tion.

Therefore, regardless of the number of rounds in the elec-
tion, the rational voter always Waits until the last round

in the process before casting a sincere ballot for their

top choice. For this arrangement of candidates and voter
preferences, Sticker Voting is equivalent to a simultaneous
vote.

6. DISCUSSION & CONCLUSION
In our two simple instances of Sticker Voting, we observe

that rational voter behavior di↵ers dramatically. In the com-
plete information game, voters will play a mixed strategy in

2Note that the Condorcet cycle is important here: if the
remaining voter is Type C, she would strategically vote for
A.



the first round, playing either their second choice or Wait-
ing; if they chose to Wait, they will break any ties in their
favor in the final round, or otherwise vote sincerely. In the
incomplete information game, voters will always exercise the
Wait option until they reach the final round, during which
they vote sincerely.

It is interesting to contrast the two behaviors. The vot-
ers in the complete information game know that the other
players are rivals, and therefore understand that there is
a first-mover disadvantage if they are greedy. Yet there is
also an incentive to concede early to secure acceptable com-
promise. In the incomplete information game, the voter is
unsure as to the nature of the other players. However, more
likely than not, one of the other players has the same type
as her, so there is an opportunity to signal cooperation. But
any incentive to do this is outweighed by the shrewdness of
Waiting until the final round, where any other players with
the same type as her will naturally coordinate their votes
out of self interest. Additionally, in sharp contrast with the
complete information game, voting second choice is never
exercised as an option.

The result of our incomplete information game is in line
with the results of Dekel and Piccione [6]. In their model,
voters must commit to voting in one of two rounds. This
decision is made prior to the election, and prior to realizing
their own preferences. They find that rational voters will al-
ways vote in the second and final round. Battaglini, Morton
and Palfrey [3] also remark in their work that latter voters
benefit from informational e↵ects revealed by earlier vot-
ers; while their model is fundamentally di↵erent from ours,
a similar observation can be made. Finally, in Sandholm
and Vulkan’s bargaining game with deadlines [15], rational
agents will wait until the final moment before their deadline
before acting. Yet, these results appear to be at odds with
the incentives o↵ered by the Republican and Democratic
Parties in the U.S., who award bonus delegates to states
voting later in the primary season.

Moreover, our solution for the rational voter seem unin-
tuitive when applied to human voters. In real world Sticker
Voting venues and in online polls, we do not expect to see
all (or even, a majority of) voters deliberating until the last
minute to cast their ballots. We know that humans are im-
patient and place diminishing value on future payo↵s; Are
these important qualities to model in Sticker Voting? Hu-
man voters also place importance on the expressiveness of
voting – they gain satisfaction from having expressed their
opinion through voting sincerely. It would be interesting to
conduct experiments similar to Battaglini, Morton and Pal-
frey [3] to elicit data on human voting behavior when using
the Sticker Voting mechanism.

Additionally, we have made several assumptions about the
preference structure and voter behavior for tractability of
analysis. What happens when we relax these assumptions?
The Condorcet cycle in the preference structure is an impor-
tant element in at least one of the calculations in the model
(see Footnote 2). Do the results hold if such cycle are rare
in practice?

One possible model of bounded rationality that may ap-
plied to Sticker Voting is the Quantal Response Equilibrium
(QRE) model [10], where players have a nonzero probability
of playing each action, defined as a function of the expected
payo↵ of that action. For instance, in the logit equilibrium
(LQRE), the probability of playing an action a with ex-

pected utility u(a|a�i) where other players are using strate-
gies a�i is defined as

Pr(a|a�i) =
e�u(a|a�i)

Z

with sharpness parameter � and normalization constant
Z. QRE has also been extended to extensive form games,
where the agents’ future actions are treated as mixed strate-
gies defined inductively [11].

Alternatively, it may be interesting to consider a setting
where some proportion of voters are impulsive, and will com-
mit to a ballot early in the voting process. How will the
presence of such voters a↵ect the behavior of the strategic
voters? Will their actions cause a collapse in the “Waiting”
equilibrium?

Finally, it would be interesting future work to investigate
other models of deliberative agents in Sticker Voting setting.
For instance, agents may also make use of history to infer the
types of other agents, allowing them to update their beliefs
of the distribution of types in population of uncommitted
voters, and therefore strategize accordingly.

APPENDIX
A. UTILITIES FOR ROUND T

The expected utilities for playing b1, b2 or b; in round t,
upon observing a single ballot for C can be calculated as
follows:

E(u|b(0,0,1)⇤1 ) =
1
3
(
5
3
p
(0,1,0)⇤
1 + 0p(0,1,0)⇤2 + 0p(0,1,0)⇤; )

+
1
3
(3p(0,0,1)⇤1 +

5
3
p
(0,0,1)⇤
2 + 3p(0,0,1)⇤; ) (16)

E(u|b(0,0,1)⇤2 ) =
1
3
(2p(0,1,0)⇤1 + 0p(0,1,0)⇤2 + 2p(0,1,0)⇤; )

+
1
3
(
5
3
p
(0,0,1)⇤
1 + 2p(0,0,1)⇤2 + 2p(0,0,1)⇤; ) (17)

E(u|b(0,0,1)⇤; ) =
1
3
(2p(0,1,0)⇤1 + 0p(0,1,0)⇤2 +

14
9
p
(0,1,0)⇤
; )

+
1
3
(3p(0,0,1)⇤1 + 2p(0,0,1)⇤2 +

14
9
p
(0,0,1)⇤
; ) (18)

At this point, we may use Gambit to solve the game for the
T � 1 round numerically. We get the following mixed Nash
equilibrium: p

(0,1,0)
1 = 0.96, p

(0,1,0)
2 = 0, p

(0,1,0)
; = 0.045,

and p
(0,0,1)
1 = 0.73, p(0,0,1)2 = 0, p(0,0,1); = 0.27. This leads to

an expected utility of 2.31 for a player who observes a ballot
for her second choice, or of 1.53 for a player who observes a
ballot for her last choice.

In other words, in the second-to-last round, an agent plays
a mixed strategy between playing her top choice and waiting.
The probability of waiting is higher if she observes a ballot
supporting her last choice.

More importantly, this informs us that playing b2 is always
dominated by another strategy, when observing both (0, 1, 0)
and (0, 0, 1). This allows us to calculate the exact solution.

If we assume that p(0,0,1)⇤2 = 0, we may substitute

p
(0,0,1)
1 + p

(0,0,1)
; = 1p(0,1,0)1 + p

(0,1,0)
; = 1 (19)

into the previous expected utilities:



E(u|b(0,1,0)⇤1 ) =
1
3
(3) +

1
3
(
5
3
p
(0,0,1)⇤
1 + 3p(0,0,1)⇤; ) +

1
3
(2)

=
4
9
p
(0,0,1)⇤
; +

20
9

E(u|b(0,1,0)⇤; ) =
1
3
(3p(0,1,0)⇤1 +

20
9
p
(0,1,0)⇤
; )

+
1
3
(2p(0,0,1)⇤1 +

20
9
p
(0,0,1)⇤
; ) +

1
3
(2)

= � 7
27

p
(0,1,0)⇤
;

2
27

p
(0,0,1)⇤
; ) +

7
3

E(u|b(0,0,1)⇤1 ) =
1
3
(
5
3
p
(0,1,0)⇤
1 + 0p(0,1,0)⇤; ) +

1
3
(3p(0,0,1)⇤1 + 3p(0,0,1)⇤; )

=
5
9
p
(0,1,0)⇤
1 + 1

E(u|b(0,0,1)⇤; ) =
1
3
(2p(0,1,0)⇤1 +

14
9
p
(0,1,0)⇤
; )

+
1
3
(3p(0,0,1)⇤1 +

14
9
p
(0,0,1)⇤
; )

= � 4
27

p
(0,1,0)⇤
; � 13

27
p
(0,0,1)⇤
; +

5
3

If we assume the equilibrium strategy is a mixed strategy
comprised of the remaining actions, then we may also set
E(u|b(0,1,0)⇤1 ) = E(u|b(0,1,0)⇤; ), and E(u|b(0,0,1)⇤1 ) = E(u|b(0,0,1)⇤; ),
and solving gives us the system of equations:

7p(0,1,0)⇤; + 10p(0,0,1)⇤; = 3

�11p(0,1,0)⇤; + 13p(0,0,1)⇤; = 3

This solves to give us the exact solution that verifies with
the empirical solution provided by Gambit, p(0,1,0)⇤; = 3/67

and p
(0,0,1)⇤
; = 18/67.

Using this same method allows us to compute the exact
solution for any values for expected utility obtained for tak-
ing the Wait action for any given round. Let H (L) be the
expected utility gained by waiting when observing (0, 1, 0)
((0, 0, 1)), respectively. The only changes are to the util-

ity calculations for E(u|b(0,1,0)⇤; ) and E(u|b(0,0,1)⇤; ) (Equa-
tion (18)), as follows:

E(u|b(0,1,0)⇤; ) =
1
3
(3p(0,1,0)⇤1 + 2p(0,1,0)⇤2 +Hp

(0,1,0)⇤
; )

+
1
3
(2p(0,0,1)⇤1 + 3p(0,0,1)⇤2 +Hp

(0,0,1)⇤
; ) +

1
3
(2)

=
1
3
(3p(0,1,0)⇤1 +Hp

(0,1,0)⇤
; )

+
1
3
(2p(0,0,1)⇤1 +Hp

(0,0,1)⇤
; ) +

1
3
(2)

=
1
3
(3 + (H � 3)p(0,1,0)⇤; )

+
1
3
(2 + (H � 2)p(0,0,1)⇤; ) +

1
3
(2)

=
(H � 3)

3
p
(0,1,0)⇤
;

+
(H � 2)

3
p
(0,0,1)⇤
; +

7
3

E(u|b(0,0,1)⇤; ) =
1
3
(2p(0,1,0)⇤1 + 0p(0,1,0)⇤2 + Lp

(0,1,0)⇤
; )

+
1
3
(3p(0,0,1)⇤1 + 2p(0,0,1)⇤2 + Lp

(0,0,1)⇤
; )

=
1
3
(2p(0,1,0)⇤1 + Lp

(0,1,0)⇤
; )

+
1
3
(3p(0,0,1)⇤1 + Lp

(0,0,1)⇤
; )

=
1
3
(2 + (L� 2)p(0,1,0)⇤; )

+
1
3
(3 + (L� 3)p(0,0,1)⇤; )

=
(L� 2)

3
p
(0,1,0)⇤
; +

(L� 3)
3

p
(0,0,1)⇤
; +

5
3

We set E(u|b(0,1,0)⇤1 ) = E(u|b(0,1,0)⇤; ), and E(u|b(0,0,1)⇤1 ) =

E(u|b(0,0,1)⇤; ), and solve:

(H � 3)p(0,1,0)⇤; + (H � 10
3
)p(0,0,1)⇤; = �1

3

(L� 1
3
)p(0,1,0)⇤; + (L� 3)p(0,0,1)⇤; = �1

3

which gives the solution

p
(0,1,0)
; = � 3H � 3L� 1

24H � 3L� 71

p
(0,0,1)
; =

3H � 3L� 8
24H � 3L� 71

B. THE UNCONTROLLED GAME
We say Agent 1 enters the uncontrolled game node (t+1, s)

when she has chosen to cast a ballot in round t, resulting
in the tally s (which includes her ballot and other ballots
submitted simultaneously in round t).

In particular, we are interested in the uncontrolled game
(t+1, (1, 0, 0)). If t+1 = T , then we know (due to symmetry)
both remaining agents will vote for their top preferences.
This gives an expected utility 61

27 as may be expected.
However, in prior rounds t+ 1 < T , the remaining agents

may be able to coordinate if they happen to vote sequen-
tially. This only matters if the remaining agents have types
B and C (a 2 in 9 chance), and depends on the probability
of them waiting upon observing the controlled information
state t + 1, s. As a result, the expected utility of entering
this uncontrolled game is

E(u|(t+ 1, (1, 0, 0))) (20)

=
1
27

(2pt+1,(0,1,0)
; p

t+1,(0,0,1)
; + 8pt+1,(0,1,0)

; � 10pt+1,(0,0,1)
; + 61)

(21)

where pt+1,(0,1,0)
; and p

t+1,(0,0,1)
; are inductively calculated

for round t+1 by Equations (8) and (9). The following table
shows the expected utility of entering the uncontrolled game
(t + 1, (1, 0, 0)), i.e. by casting a sincere ballot in round t
after observing no ballots. Notice all are strictly less than
61
27 .

Round t+ 1 T T-1 T-2
Utility 2.26 2.17 2.18



REFERENCES
[1] 2016 presidential primary election schedule.

https://www.washingtonpost.com/graphics/politics/2016-
election/primaries/schedule/. Accessed:
2016-02-01.

[2] N. Alon, M. Babaio↵, R. Karidi, R. Lavi, and
M. Tennenholtz. Sequential voting with externalities:
herding in social networks. In ACM Conference on

Electronic Commerce (EC’12), page 36, 2012.
[3] M. Battaglini, R. Morton, and T. Palfrey. E�ciency,

equity, and timing of voting mechanisms. American

political science Review, 101(03):409–424, 2007.
[4] R. E. Berg-Andersson. The green papers: Democratic

detailed delegate allocation - 2012.
http://www.thegreenpapers.com/P12/D-Alloc.phtml.
Accessed: 2016-02-05.

[5] S. Callander. Bandwagons and momentum in
sequential voting. The Review of Economic Studies,
74(3):653–684, 2007.

[6] E. Dekel and M. Piccione. The strategic dis/advantage
of voting early. American Economic Journal:

Microeconomics, 6(4):162–179, 2014.
[7] Y. Desmedt and E. Elkind. Equilibria of plurality

voting with abstentions. In Proceedings of the 11th

ACM conference on Electronic commerce, pages
347–356. ACM, 2010.

[8] S. Gaspers, V. Naroditskiy, N. Narodytska, and
T. Walsh. Possible and necessary winner problem in
social polls. In Proceedings of the 2014 International

Conference on Autonomous Agents and Multiagent

Systems, pages 613–620. International Foundation for
Autonomous Agents and Multiagent Systems, 2014.

[9] R. McKelvey, A. McLennan, and T. Turocy. Gambit:
Software tools for game theory. 2002.

[10] R. D. McKelvey and T. R. Palfrey. Quantal response
equilibria for normal form games. 1993.

[11] R. D. McKelvey and T. R. Palfrey. Quantal response
equilibria for extensive form games. Experimental

economics, 1(1):9–41, 1998.
[12] S. Obraztsova, E. Elkind, M. Polukarov, and

Z. Rabinovich. Doodle poll games. AGT@ IJCAI,
2015.

[13] K. Reinecke, M. K. Nguyen, A. Bernstein, M. Näf,
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ABSTRACT
We present three results on the complexity of Minimax

Approval Voting. First, we study Minimax Approval

Voting parameterized by the Hamming distance d from
the solution to the votes. We show Minimax Approval

Voting admits no algorithm running in time O?(2o(d log d)),
unless the Exponential Time Hypothesis (ETH) fails. This
means that the O?(d2d) algorithm of Misra et al. [AAMAS
2015] is essentially optimal. Motivated by this, we then
show a parameterized approximation scheme, running in time
O?((3/✏)2d), which is essentially tight assuming ETH. Finally,
we get a new polynomial-time randomized approximation
scheme for Minimax Approval Voting, which runs in time

n

O(1/✏2·log(1/✏)) · poly(m), where n is a number of voters and
m is a number of alternatives. It almost matches the running
time of the fastest known PTAS for Closest String due to
Ma and Sun [SIAM J. Comp. 2009].

CCS Concepts
•Theory of computation ! Rounding techniques; Fixed
parameter tractability; Problems, reductions and com-
pleteness; Linear programming; •Computing methodolo-

gies ! Multi-agent systems;

Keywords
minimax approval voting, computational social choice, lower
bound, parameterized complexity, ptas

1. INTRODUCTION
One of the central problems in artificial intelligence and

computational social choice is aggregating preferences of
individual agents (see the overview of Conitzer [8]). Here we
focus on multi-winner choice, where the goal is to select a
k-element subset of a set of candidates. Given preferences of

Will be published in: Proceedings of The Thirty-First AAAI
Conference on Artificial Intelligence (AAAI-17). February 4th-9th, 2017.
San Francisco, California, USA.
Appears at: 4th Workshop on Exploring Beyond the Worst Case in
Computational Social Choice (EXPLORE 2017). Held as part of the Work-
shops at the 16th International Conference on Autonomous Agents and
Multiagent Systems. May 8th-9th, 2017. Sao Paulo, Brazil.

the agents over the candidates, a multi-winner voting rule
can be used to select a subset of candidates that in some
sense are preferred by the agents. This scenario covers a
variety of settings: nations elect members of parliament or
societies elect committees [7], web search engines choose
pages to display in response to a query [11], airlines select
movies available on board [31, 12], companies select a group
of products to promote [25], etc.
In this work we restrict our attention to approval-based

multi-winner rules, i.e., rules where each voter expresses his
or her preferences by providing a subset of the candidates
which he or she approves. Various voting rules are studied
in the literature. In the simplest one, Approval Voting (AV),
occurrences of each candidate are counted and k most often
approved candidates are selected. While this rule has many
desirable properties in the single winner case [13], in the
multi-winner scenario its merits are often considered less
clear [18], e.g., because it fails to reflect the diversity of inter-
ests in the electorate [17]. Therefore, numerous alternative
rules have been proposed, including Satisfaction Approval
Voting, Proportional Approval Voting, and Reweighted Ap-
proval Voting (see [17] for details). In this paper we study
a rule called Minimax Approval Voting (MAV), introduced
by Brams et al. [3]. Here, we see the votes and the choice as
0-1 strings of length m (characteristic vectors of the subsets,
i.e., the candidate i is approved if the string contains 1 at
position i). For two strings x and y of the same length the
Hamming distance H(x, y) is the number of positions where
x and y di↵er, e.g., H(011, 101) = 2. In MAV, we look for a
0-1 string with k ones that minimizes the maximum Ham-
ming distance to a vote. In other words, MAV minimizes
the disagreement with the least satisfied voter and thus it
is highly egalitarian: no voter is ignored and a majority of
voters cannot guarantee a specific outcome [3, 19].

Our focus is on the computational complexity of comput-
ing the choice based on the MAV rule. In the Minimax

Approval Voting decision problem, we are given a multiset
S = {s1, . . . , sn} of 0-1 strings of length m (also called votes),
and two integers k and d. The question is whether there
exists a string s 2 {0, 1}m with exactly k ones such that for
every i = 1, . . . , n we have H(s, s

i

)  d. In the optimization
version of Minimax Approval Voting we minimize d, i.e.,
given a multiset S and an integer k as before, the goal is to



find a string s 2 {0, 1}m with exactly k ones which minimizes
max

i=1,...,n H(s, s
i

).
A reader familiar with string problems might recognize

that Minimax Approval Voting is tightly connected with
the classical NP-complete problem called Closest String,
where we are given n strings over an alphabet ⌃ and the goal
is to find a string that minimizes the maximum Hamming
distance to the given strings. Indeed, LeGrand et al. [20]
showed that Minimax Approval Voting is NP-complete as
well by reduction from Closest String with binary alpha-
bet. First proof of NP-completeness of Minimax Approval

Voting was shown using reduction from Vertex Cover [19].
This motivated the study on Minimax Approval Voting

in terms of approximability and fixed-parameter tractability.

Previous results on Minimax Approval Voting .
First approximation result was a simple 3-approximation

algorithm due to LeGrand et al. [20], obtained by choosing
an arbitrary vote and taking any k approved candidates
from the vote (extending it arbitrarily to k candidates if
needed). Next, a 2-approximation was shown by Caragiannis
et al. [6] using an LP-rounding procedure. Finally, Byrka et
al. [5] presented a polynomial time approximation scheme
(PTAS), i.e., an algorithm that for any fixed ✏ > 0 gives
a (1 + ✏)-approximate solution in polynomial time. More

precisely, their algorithm runs in time m

O(1/✏4) + n

O(1/✏3)

which is polynomial in the number of voters n and the number
of alternatives m. The PTAS uses information extraction
techniques from fixed size (O(1/✏)) subsets of voters and
random rounding of the optimal solution of a linear program.
In the area of fixed parameter tractability (FPT) every

instance I of a problem P contains additionally an integer
r, called a parameter. The goal is to find a fixed parameter
algorithm (also called FPT algorithm), i.e., an algorithm
with running time of the form f(r)poly(|I|), where f is
a function, which is typically at least exponential for NP-
complete problems. If such an algorithm exists, we say
that the problem P parameterized by r is fixed parameter
tractable (FPT). For more details about FPT algorithms see
the textbook of Cygan et al. [9] or the survey Bredereck et
al. [4] (in the context of computational social choice). The
study of FPT algorithms for Minimax Approval Voting

was initiated by Misra et al. [28]. They show for example
that Minimax Approval Voting parameterized by k (the
number of ones in the solution) is W [2]-hard, which implies
that there is no FPT algorithm, unless there is a highly
unexpected collapse in parameterized complexity classes.
From a positive perspective, they show that the problem is
FPT when parameterized by the maximum allowed distance
d or by the number of votes n. Their algorithm runs in time1

O?(d2d).2 For a study on FPT complexity of generalizations
of Minimax Approval Voting see Baumeister et al. [2].

1The O? notation suppresses factors polynomial in the input
size.
2Actually, in the article [28] the authors claim the slightly
better running time of O?(dd). However, there is a flaw in
the analysis [22, 27]: it states that the initial solution v is
at distance at most d from the solution, while it can be at
distance 2d because of what we call here the k-completion op-
eration. This increases the maximum depth of the recursion
to d (instead of the claimed d/2).

Previous results on Closest String .
It is interesting to compare the known results on Minimax

Approval Voting with the corresponding ones on the better
researched Closest String. The first PTAS for Closest

String was given by Li et al. [21] with running time bounded

by n

O(1/✏4) where n is the number of the input strings. This

was later improved by Andoni et al. [1] to n

O(
log 1/✏

✏2
), and

then by Ma et al. [26] to n

O(1/✏2).
The first FPT algorithm for Closest String, running

in time O?(dd) was given by Gramm et al. [14]. This was
later improved by Ma et al. [26], who gave an algorithm
with running time O?(2O(d) · |⌃|d), which is more e�cient for
constant-size alphabets. Further substantial progress is un-
likely, since Lokshtanov et al. [24] have shown that Closest

String admits no algorithms running in time O?(2o(d log d))
or O?(2o(d log |⌃|)), unless the Exponential Time Hypothesis
(ETH) [15] fails.

The discrepancy between the state of the art for Closest

String and Minimax Approval Voting raises interesting
questions. First, does the additional constraint on the num-
ber of ones in Minimax Approval Voting really make the
problem harder and the PTAS has to be significantly slower?
Similarly, although in Minimax Approval Voting the al-
phabet is binary, no O?(2O(d))-time algorithm is known, in
contrast to Closest String. Can we find such an algorithm?
The goal of this work is to answer these questions.

Our results.
We present three results on the complexity of Minimax

Approval Voting. Let us recall that the Exponential Time
Hypothesis (ETH) of Impagliazzo et al. [15] states that there
exists a constant c > 0, such that there is no algorithm
solving 3-SAT in time O?(2cn). In recent years, ETH be-
came the central conjecture used for proving tight bounds
on the complexity of various problems, see Lokshtanov et
al. [23] for a survey. Nevertheless, ETH-based lower bounds
seem largely unexplored in the area of computational so-
cial choice [30]. We begin with showing that, unless the
ETH fails, there is no algorithm for Minimax Approval

Voting running in time O?(2o(d log d)). In other words, the
algorithm of Misra et.al [28] is essentially optimal, and in-
deed, in this sense Minimax Approval Voting is harder
than Closest String. Motivated by this, we then show
a parameterized approximation scheme, i.e., a randomized
Monte-Carlo algorithm which, given an instance (S, k, d) and
a number ✏ > 0, finds a solution at distance at most (1 + ✏)d
in time O?((3/✏)2d) or reports that there is no solution at
distance at most d (with arbitrarily small positive constant
probability of error). Note that our lower bound implies that,
under (randomized version of) ETH, this is essentially opti-
mal, i.e., there is no parameterized approximation scheme
running in time O?(2o(d log(1/✏))). Indeed, if such an algo-
rithm existed, by picking ✏ = 1/(d + 1) we would get an
exact algorithm which contradicts our lower bound. Finally,
we get a new polynomial-time randomized approximation
scheme for Minimax Approval Voting, which runs in time

n

O(1/✏2·log(1/✏)) ·poly(m) (with arbitrarily small positive con-
stant probability of error). Thus the running time almost
matches the one of the fastest known PTAS for Closest

String (up to a log(1/✏) factor in the exponent).



Organization of the paper.
In Section 2 we introduce some notation and we recall

standard probability bounds that are used later in the pa-
per. In Section 3 we present our lower bound for Minimax

Approval Voting parameterized by d. Next, in Section 4
we show a parameterized approximation scheme. Finally,
in Section 5 we show a new randomized PTAS. The paper
concludes with Section 6, where we discuss directions for
future work.

2. DEFINITIONS AND PRELIMINARIES
For every integer n we denote [n] = {1, 2, . . . , n}. For a

set of words S ✓ {0, 1}m and a word x 2 {0, 1}m we denote
H(x, S) = max

s2S

H(x, s). For a string s 2 {0, 1}m, the
number of 1’s in s is denoted as n1(s) and it is also called the
Hamming weight of s; similarly n0(s) = m� n1(s) denotes
the number of zeroes. Moreover, the set of all strings of
length m with k ones is denoted by S

k,m

, i.e., S
k,m

= {s 2
{0, 1}m : n1(s) = k}. s[j] means the j-th letter of a string s.
For a subset of positions P ✓ [m] we define a subsequence
s|

P

by removing the letters at positions [m] \ P from s.
For a string s 2 {0, 1}m, any string s

0 2 S

k,m

at distance
|n1(s)� k| from s is called a k-completion of s. Note that it
is easy to find such a k-completion s

0: when n1(s) � k we
obtain s

0 by replacing arbitrary n1(s)� k ones in s by zeroes;
similarly when n1(s) < k we obtain s

0 by replacing arbitrary
k � n1(s) zeroes in s by ones.

3. A LOWER BOUND
In this section we show a lower bound for Minimax Ap-

proval Voting parameterized by d. To this end, we use a re-
duction from a problem called k⇥k-Clique. In k⇥k-Clique

we are given a graph G over the vertex set V = [k] ⇥ [k],
i.e., V forms a grid (as a vertex set; the edge set of G is a
part of the input and it can be arbitrary) with k rows and k

columns, and the question is whether in G there is a clique
containing exactly one vertex in each row.

Lemma 3.1. Given an instance I = (G, k) of k⇥k-Clique

with k � 2, one can construct an instance I

0 = (S, k, d) of
Minimax Approval Voting, such that I 0 is a yes-instance
i↵ I is a yes-instance, d = 3k � 3 and the set S contains
O(k

�
2k�2
k�2

�
) strings of length k

2 + 2k� 2 each. The construc-
tion takes time polynomial in the size of the output.

Proof. Each string in the set S will be of size m =
k

2 + 2k � 2. Let us split the set of positions [m] into k + 1
blocks, where the first k blocks contain exactly k positions
each, and the last (k + 1)-th block contains the remaining
2k � 2 positions. Our construction will enforce that if a
solution exists, it will have the following structure: there will
be a single 1 in each of the first k blocks and only zeroes
in the last block. Intuitively the position of the 1 in the
first block encodes the clique vertex of the first row of G,
the position of the 1 in the second block encodes the clique
vertex of the second row of G, etc.

We construct the set S as follows.

• (nonedge strings) For each pair of nonadjacent ver-
tices v, v

0 2 V (G) of G belonging to di↵erent rows,
i.e., v = (a, b), v0 = (a0

, b

0), a 6= a

0, we add to S a
string s

vv

0 , where all the blocks except a-th and a

0-th
are filled with zeroes, while the blocks a, a0 are filled

0 ... 0 1 ... 1 0 1 ... 1 0 ... 0 1 ... 1 0 1 ... 1 0...0
0 on b-th position 0 on b0-th position

| {z } | {z }
a-th block a0

-th block

Figure 1: Nonedge string.

0 ... 0 1 ... 1 0 ... 0 0 0 1 0 1 1 0 ... 0 1 0
| {z } | {z }
i-th block ones at positions X, |X| = k � 2

Figure 2: Row string.

with ones, except the b-th position in block a and the
b

0-th position in block a

0 which are zeroes (see Fig. 1).
Formally, s

vv

0 contains ones at positions {(a� 1)k+ j :
j 2 [k], j 6= b} [ {(a0 � 1)k + j : j 2 [k], j 6= b

0}. Note
that the Hamming weight of s

vv

0 equals 2k � 2.

• (row strings) For each row i 2 [k] we create exactly�
2k�2
k�2

�
strings, i.e., for i 2 [k] and for each set X of

exactly k � 2 positions in the (k + 1)-th block we add
to S a string s

i,X

having ones at all positions of the
i-th block and at X, all the remaining positions are
filled with zeroes (see Fig. 2). Note that similarly as
for the nonedge strings the Hamming weight of each
row string equals 2k � 2, and to achieve this property
we use the (k + 1)-th block.

To finish the description of the created instance I

0 =
(S, k, d) we need to define the target distance d, which we set
as d = 3k � 3. Observe that as the Hamming weight of each
string s

0 2 S equals 2k � 2, for s 2 {0, 1}m with exactly k

ones we have H(s, s0)  d if and only if the positions of ones
in s and s

0 have a non-empty intersection.
Let us assume that there is a clique K in G of size k

containing exactly one vertex from each row. For i 2 [k] let
j

i

2 [k] be the column number of the vertex of K from row i.
Define s as a string containing ones exactly at positions
{(i � 1)k + j

i

: i 2 [k]}, i.e., the (k + 1)-th block contains
only zeroes and for i 2 [k] the i-th block contains a single 1
at position j

i

. Obviously s contains exactly k ones, hence it
su�ces to show that s has at least one common one with each
of the strings in S. This is clear for the row strings, as each
row string contains a block full of ones. For a nonedge string
s

vv

0 , where v = (a, b) and v

0 = (a0
, b

0) note that K does not
contain v and v

0 at the same time. Consequently s has a
common one with s

vv

0 in at least one of the blocks a, a0.
In the other direction, assume that s is a string of length m

with exactly k ones such that the Hamming distance be-
tween s and each of the strings in S is at most d, which by
construction implies that s has a common one with each of
the strings in S. First, we are going to prove that s con-
tains a 1 in each of the first k blocks (and consequently has
only zeroes in block k + 1). For the sake of contradiction
assume that this is not the case. Consider a block i 2 [k]
containing only zeroes. Let X be any set of k � 2 positions
in block k + 1 holding only zeroes in s (such a set exists
as block k + 1 has 2k � 2 positions). But the row string
s

i,X

has 2k � 2 ones at positions where s has zeroes, and
consequently H(s, s

i,X

) = k+(2k�2) = 3k�2 > d = 3k�3,
a contradiction.



As we know that s contains exactly one one in each of the
first k blocks let j

i

2 [k] be such a position of block i 2 [k].
Create X ✓ V (G) by taking the vertex from column j

i

for
each row i 2 [k]. Clearly X is of size k and it contains exactly
one vertex from each row, hence it remains to prove that X
is a clique in G. Assume the contrary and let v, v0 2 X be
two distinct nonadjacent vertices of X, where v = (i, j

i

) and
v

0 = (i0, j
i

0). Observe that the nonedge string s

vv

0 contains
zeroes at the j

i

-th position of the i-th block and at the j

i

0 -th
position of the i

0-th block. Since for i00 2 [k], i00 6= i, i00 6= i

0

block i

00 of s
vv

0 contains only zeroes, we infer that the sets
of positions of ones of s and s

vv

0 are disjoint leading to
H(s, s

vv

0) = k + (2k � 2) = 3k � 2 > d, a contradiction.
As we have proved that I is a yes-instance of k⇥k-Clique

i↵ I

0 is a yes-instance of Minimax Approval Voting, the
lemma follows.

In order to derive an ETH-based lower bound we need the
following theorem of Lokshtanov et al. [24].

Theorem 3.2. (Lokshtanov et al. [24]) Assuming ETH,
there is no 2o(k log k)-time algorithm for k ⇥ k-Clique.

We are ready to prove the main result of this section.

Theorem 3.3. There is no 2o(d log d)poly(n,m)-time algo-
rithm for Minimax Approval Voting unless ETH fails.

Proof. Using Lemma 3.1, the input instance G of k ⇥ k-

Clique is transformed into an equivalent instance I

0 =
(S, k, d) of Minimax Approval Voting, where n = |S| =
O(k

�
2k�2
k�2

�
) = 2O(k), each string of S has length m = O(k2)

and d = ⇥(k). Using a 2o(d log d)poly(n,m)-time algorithm
for Minimax Approval Voting we can solve k ⇥ k-Clique

in time 2o(k log k)2O(k) = 2o(k log k), which contradicts ETH
by Theorem 3.2.

4. PARAMETERIZED APPROXIMATION
SCHEME

In this section we show the following theorem.

Theorem 4.1. There exists a randomized algorithm which,
given an instance ({s

i

}
i=1,...,n, k, d) of Minimax Approval

Voting and any ✏ 2 (0, 3), runs in time O
⇣�

3
✏

�2d
mn

⌘
and

either

(i) reports a solution at distance at most (1 + ✏)d from S,
or

(ii) reports that there is no solution at distance at most d
from S.

In the latter case, the answer is correct with probability at
least 1� p, for arbitrarily small fixed p > 0.

Let us proceed with the proof. In what follows we assume
p = 1/2, since then we can get the claim even if p < 1/2
by repeating the whole algorithm dlog2(1/p)e times. Indeed,
then the algorithm returns an incorrect answer only if each
of the dlog2(1/p)e repetitions returned an incorrect answer,
which happens with probability at most (1/2)log2(1/p) = p.

Assume we are given a yes-instance and let us fix a solution
s

⇤ 2 S

k,m

, i.e., a string at distance at most d from all
the input strings. Our approach is to begin with a string

Pseudocode 1: Parameterized approximation scheme
for Minimax Approval Voting.

1 if |n1(s1)� k| > d then return NO;
2 x0  any k-completion of s1;
3 for j 2 {1, 2, . . . , d} do

4 if H(x
j�1, S)  (1 + ✏)d then return x

j�1;
5 otherwise there exists s

i

s.t. H(x
j�1, si) > (1 + ✏)d;

6 P

j,0  {a 2 [m] : 0 = x

j�1[a] 6= s

i

[a] = 1};
7 P

j,1  {a 2 [m] : 1 = x

j�1[a] 6= s

i

[a] = 0};
8 if min(|P

j,0|, |Pj,1|) = 0 then return NO;
9 Get x

j

from x

j�1 by swapping 0 and 1 on pair of random
positions from P

j,0 and P

j,1;

10 if H(x
d

, S)  (1 + ✏)d then return x

d

;
11 else return NO ;

x0 2 S

k,m

not very far from s

⇤, and next perform a number of
steps. In the j-th step we either conclude that x

j�1 is already
a (1 + ✏)-approximate solution, or with some probability we
find another string x

j

which is closer to s

⇤.
First observe that if |n1(s1)� k| > d, then clearly there is

no solution and our algorithm reports NO. Hence in what
follows we assume

|n1(s1)� k|  d. (1)

We set x0 to be any k-completion of s1. By (1) we get
H(x0, s1)  d. Since H(s1, s

⇤)  d, by the triangle inequality
we get the following bound.

H(x0, s
⇤)  H(x0, s1) +H(s1, s

⇤)  2d. (2)

Now we are ready to describe our algorithm precisely (see
also Pseudocode 1). We begin with x0 defined as above. We
are going to create a sequence of strings x0, x1, . . . satisfying
n1(xj

) = k for every j. For j = 1, . . . , d we do the following.
If for every i = 1, . . . , n we have H(x

j�1, si)  (1 + ✏)d
the algorithm terminates and returns x

j�1. Otherwise, fix
any i = 1, . . . , n such that H(x

j�1, si) > (1 + ✏)d. Let
P

j,0 = {a 2 [m] : 0 = x

j�1[a] 6= s

i

[a] = 1} and P

j,1 = {a 2
[m] : 1 = x

j�1[a] 6= s

i

[a] = 0}. The algorithm samples a
position a0 2 P

j,0 and a position a1 2 P

j,1. In case P
j,0 = ; or

P

j,1 = ; we return NO because it means that H(s
i

, S

k,m

) =
H(s

i

, x

j�1) > d. Then, x
j

is obtained from x

j�1 by swapping
the 0 at position a0 with the 1 at position a1. If the algorithm
finishes without finding a solution, it reports NO.
The following lemma is the key to get a lower bound on

the probability that the x

j

’s get close to s

⇤.

Lemma 4.2. Let x be a string in S

k,m

such that H(x, s
i

) �
(1+ ✏)d for some i = 1, . . . , n. Let s⇤ 2 S

k,m

be any solution,
i.e., a string at distance at most d from all the strings s

i

,
i = 1, . . . , n. Denote

P

⇤
0 = {a 2 [m] : 0 = x[a] 6= s

i

[a] = s

⇤[a] = 1} ,

P

⇤
1 = {a 2 [m] : 1 = x[a] 6= s

i

[a] = s

⇤[a] = 0} .
Then,

min (|P ⇤
0 | , |P ⇤

1 |) �
✏d

2
.

Proof. Let P be the set of positions on which x and s

i

di↵er, i.e., P = {a 2 [m] : x[a] 6= s

i

[a]} (see Fig. 3). Note
that P ⇤

0 [ P

⇤
1 ✓ P . Let Q = [m] \ P .

The intuition behind the proof is that if min(|P ⇤
0 |, |P ⇤

1 |)
is small, then s

⇤ di↵ers too much from s

i

, either because



P

Q

P

⇤
0 P

⇤
1

s

⇤ 0 11 0

s

i 1 0 0 1

x 0 1 0 1

Figure 3: Strings x, s
i

and s

⇤ after permuting the positions.

s

⇤|
P

is similar to x|
P

(when |P ⇤
0 | ⇡ |P ⇤

1 |) or because s

⇤|
Q

has much more 1’s than s

i

|
Q

(when |P ⇤
0 | di↵ers much from

|P ⇤
1 |).
We begin with a couple of useful observations on the

number of ones in di↵erent parts of x, s
i

and s

⇤. Since x

and s

i

are the same on Q, we get

n1(x|Q) = n1(si|Q). (3)

Since n1(x) = n1(s
⇤), we get n1(x|P )+n1(x|Q) = n1(s

⇤|
P

)+
n1(s

⇤|
Q

), and further

n1(s
⇤|

Q

)� n1(x|Q) = n1(x|P )� n1(s
⇤|

P

). (4)

Finally note that

n1(s
⇤|

P

) = |P ⇤
0 |+ n1(x|P )� |P ⇤

1 |. (5)

We are going to derive a lower bound on H(s
i

, s

⇤). First,

H(s
i

|
P

, s

⇤|
P

) = |P |� (|P ⇤
0 |+ |P ⇤

1 |) =
= H(x, s

i

)� (|P ⇤
0 |+ |P ⇤

1 |) � (1 + ✏)d� (|P ⇤
0 |+ |P ⇤

1 |).
On the other hand,

H(s
i

|
Q

, s

⇤|
Q

) � |n1(s
⇤|

Q

)� n1(si|Q)| =
(3)
= |n1(s

⇤|
Q

)� n1(x|Q)| =
(4)
= |n1(x|P )� n1(s

⇤|
P

)| =
(5)
= ||P ⇤

1 |� |P ⇤
0 || .

It follows that

d � H(s
i

, s

⇤) = H(s
i

|
P

, s

⇤|
P

) +H(s
i

|
Q

, s

⇤|
Q

) �
� (1 + ✏)d� (|P ⇤

0 |+ |P ⇤
1 |) + ||P ⇤

1 |� |P ⇤
0 || =

= (1 + ✏)d� 2min(|P ⇤
0 |, |P ⇤

1 |).

Hence, min(|P ⇤
0 |, |P ⇤

1 |) � ✏d

2
as required.

Corollary 4.3. Assume that there is a solution s

⇤ 2
S

k,m

and that the algorithm created a string x

j

, for some
j = 0, . . . , d. Then,

Pr[H(x
j

, s

⇤)  2d� 2j] �
⇣
✏

3

⌘2j
.

Proof. We use induction on j. For j = 0 the claim follows
from (2). Consider j > 0. By the induction hypothesis,

Pr[H(x
j�1, s

⇤)  2d� 2j + 2] �
⇣
✏

3

⌘2j�2

. (6)

Assume that H(x
j�1, s

⇤)  2d�2j+2. Since x

j

was created,
H(x

j�1, si) > (1+✏)d for some i = 1, . . . , n. SinceH(s⇤, s
i

) 
d, by the triangle inequality we get the following.

|P
j,0|+ |P

j,1| = H(x
j�1, si) 

 H(x
j�1, s

⇤) +H(s⇤, s
i

)  3d� 2j + 2  3d. (7)

Then, by Lemma 4.2

Pr[H(x
j

, s

⇤)  2d� 2j | H(x
j�1, s

⇤)  2d� 2j + 2] �

� |P ⇤
0 | · |P ⇤

1 |
|P

j,0| · |Pj,1|
�
�
✏d

2

�2
�
3d
2

�2 =
⇣
✏

3

⌘2
. (8)

The claim follows by combining (6) and (8).

In order to increase the success probability, we repeat the
algorithm until a solution is found or the number of repe-
titions is at least (3/✏)2d. By Corollary 4.3 the probability
that there is a solution but it was not found is bounded by

✓
1�

⇣
✏

3

⌘2d◆(3/✏)2d

=

 
1� 1

(3/✏)2d

!(3/✏)2d

 1
e

<

1
2
.

This finishes the proof of Theorem 4.1.

5. A FASTER POLYNOMIAL TIME
APPROXIMATION SCHEME

The goal of this section is to present a PTAS for the
optimization version of Minimax Approval Voting run-

ning in time n

O(1/✏2·log(1/✏)) · poly(m). It is achieved by
combining the parameterized approximation scheme from
Theorem 4.1 with the following result, which might be of
independent interest. Throughout this section OPT de-
notes the value of an optimum solution s for the given
instance ({s

i

}
i=1,...,n, k) of Minimax Approval Voting,

i.e., OPT = max
i=1,...,n H(s, s

i

),

Theorem 5.1. There exists a randomized polynomial time
algorithm which, for arbitrarily small fixed p > 0, given an
instance ({s

i

}
i=1,...,n, k) of Minimax Approval Voting

and any ✏ > 0 such that OPT � 122 lnn

✏

2

, reports a solution,
which with probability at least 1 � p is at distance at most
(1 + ✏) ·OPT from S.

In what follows, we prove Theorem 5.1. As in the proof
of Theorem 4.1 we assume w.l.o.g. p = 1/2. Note that
we can assume ✏ < 1, for otherwise it su�ces to use the
2-approximation of Caragiannis et al. [6]. We also assume
n � 3, for otherwise it is a straightforward exercise to find
an optimal solution in linear time. Let us define a linear
program (9–12):

minimize d (9)
mX

j=1

x

j

= k (10)

X

j=1,...,m
si[j]=1

(1� x

j

) +
X

j=1,...,m
si[j]=0

x

j

 d 8i 2 {1, . . . , n} (11)

x

j

2[0, 1] 8j 2 {1, . . . ,m} (12)

The linear program (9–12) is a relaxation of the natural
integer program for Minimax Approval Voting, obtained
by replacing (12) by the discrete constraint x

j

2 {0, 1}.
Indeed, observe that x

j

corresponds to the j-th letter of the
solution x = x1 · · ·xm

, (10) states that n1(x) = k, and (11)
states that H(x, S)  d.
Our algorithm is as follows (see Pseudocode 2). First we

solve the linear program in time poly(n,m) using the interior



Pseudocode 2: The algorithm from Theorem 5.1

1 Solve the LP (9–12) obtaining an optimal solution
(x⇤

1, . . . , x
⇤
m

, d

⇤);
2 for j 2 {1, 2, . . . ,m} do

3 Set x[j] 1 with probability x

⇤
j

and x[j] 0 with

probability 1� x

⇤
j

4 y  any k-completion of x;

5 return y

point method [16]. Let (x⇤
1, . . . , x

⇤
m

, d

⇤) be the obtained opti-
mal solution. Clearly, d⇤  OPT. We randomly construct a
string x 2 {0, 1}m, guided by the values x⇤

j

. More precisely,
for every j = 1, . . . ,m independently, we set x[j] = 1 with
probability x

⇤
j

. Note that x needs not contain k ones. Let y
by any k-completion of x. The algorithm returns y.
Clearly, the above algorithm runs in polynomial time. In

what follows we bound the probability of error. To this end
we prove upper bounds on the probability that x is far from
S and the probability that the number of ones in x is far
from k. This is done in Lemmas 5.3 and 5.4, which can be
shown using standard Cherno↵ bounds (see e.g. Chapter 4.1
in [29]).

Theorem 5.2. (Motwani et al. [29]) Let X1, X2, . . . , Xn

be n independent random 0-1 variables such that for every
i = 1, . . . , n we have Pr [X

i

= 1] = p

i

, for p

i

2 [0, 1]. Let
X =

P
n

i=1 Xi

. Then,

• for any 0 < ✏  1 we have:

Pr [X > (1 + ✏) · E [X]]  exp
�
� 1

3
✏

2 · E [X]
�

(13)

Pr [X < (1� ✏) · E [X]]  exp
�
� 1

2
✏

2 · E [X]
�

(14)

• for any 1 < ✏ we have:

Pr [X > (1 + ✏) · E [X]]  exp
�
� 1

3
✏ · E [X]

�
(15)

Pr [X < (1� ✏) · E [X]] = 0 (16)

Lemma 5.3.

Pr
⇥
H(x, S) > (1 + ✏

2
) ·OPT

⇤
 1

4
.

Proof. For every i = 1, . . . , n we define a random variable
D

i

that measures the distance between x

⇤ and s

i

D

i

=
X

j2[m]
si[j]=1

(1� x[j]) +
X

j2[m]
si[j]=0

x[j].

Note that x[i] are independent 0-1 random variables. Using
linearity of the expectation we obtain

E[D
i

] = E

2

4
X

j2[m],si[j]=1

(1� x[j]) +
X

j2[m],si[j]=0

x[j]

3

5 =

=
X

j2[m],si[j]=1

(1� E[x[j]]) +
X

j2[m],si[j]=0

E[x[j]] =

=
X

j2[m],si[j]=1

(1� x

⇤
j

) +
X

j2[m],si[j]=0

x

⇤
j



 d

⇤  OPT. (17)

Note that D
i

is a sum of m independent 0-1 random variables
X

j

= 1�x[j] when s

i

[j] = 1 and X

j

= x[j] otherwise. Denote

� = ✏ · OPT
2E[Di]

. We apply Cherno↵ bounds. For � < 1 we have

Pr[D
i

>

�
1 + ✏

2

�
·OPT]

(17)


 Pr

⇥
D

i

> E[D
i

] + ✏

2
·OPT

⇤
=

= Pr [D
i

> (1 + �) · E[D
i

]]
(13)



 exp

 
�1
3

✓
✏ · OPT

2E[D
i

]

◆2

E[D
i

]

!
(17)



 exp

✓
� ✏

2 ·OPT
12

◆
.

In case � � 1 we proceed analogously, using the Cherno↵
bound (15)

Pr[D
i

>

�
1 + ✏

2

�
·OPT]

(15)



 exp

✓
� ✏ ·OPT

6

◆
1>✏

 exp

✓
� ✏

2 ·OPT
12

◆
.

Now we use the union bound to get the claim.

Pr
⇥
H(x, S) > (1 + ✏

2
) ·OPT

⇤
=

= Pr
⇥
9i 2 [n] D

i

>

�
1 + ✏

2

�
·OPT

⇤


 n · exp
✓
� ✏

2 ·OPT
12

◆


 n · exp
 
�

122 lnn

OPT
·OPT

12

!
< n

�9 n�3
<

1
4
. (18)

Lemma 5.4.

Pr
⇥
|n1(x)� k| > ✏

2
·OPT

⇤
 1

4
.

Proof. First we note that

E[n1(x)] = E
h X

j2[m]

x[j]
i
=
X

j2[m]

E[x[j]] =
X

j2[m]

x

⇤
j

= k.

(19)
Pick an i = 1, . . . , n. Define the random variables

E

i

=
X

j2[m],si[j]=1

(1� x[j]), F

i

=
X

j2[m],si[j]=0

x[j].

Let D
i

= E

i

+ F

i

, as in the proof of Lemma 5.3. By (17) we
have

E[E
i

]  E[E
i

] + E[F
i

] = E[D
i

]  OPT (20)

E[F
i

]  E[E
i

] + E[F
i

] = E[D
i

]  OPT (21)

Both E

i

and F

i

are sums of independent 0-1 random
variables and we apply Cherno↵ bounds as follows. When
1
4
✏ · OPT

E[Ei]
 1 then using (13) and (14) we obtain

Pr

���E
i

� E[E
i

]
��� >

1
4
✏ ·OPT

�
(13),(14)



 exp

✓
�1
3
· 1
16

✏

2 · (OPT)2

E2 [E
i

]
· E[E

i

]

◆
+

+ exp

✓
�1
2
· 1
16

✏

2 · (OPT)2

E2 [E
i

]
· E[E

i

]

◆
20



 2 · exp
✓
� 1
48

✏

2 ·OPT

◆
,



otherwise
⇣

1
4
✏ · OPT

E[Ei]
> 1
⌘
, using (15) and (16), we have

Pr

���E
i

� E[E
i

]
��� >

1
4
✏ ·OPT

�
(15),(16)



 exp

✓
�1
3
· 1
4
✏ · OPT

E[E
i

]
· E[E

i

]

◆
+ 0 

 exp

✓
� 1
12

✏ ·OPT

◆
1>✏

 2 · exp
✓
� 1
48

✏

2 ·OPT

◆
.

To sum up, in both cases we have shown that

Pr
h���E

i

� E[E
i

]
��� >

✏

4
·OPT

i
 2 · exp

✓
� 1
48

✏

2 ·OPT

◆
.

(22)
Similarly we show

Pr
h���F

i

� E[F
i

]
��� >

✏

4
·OPT

i
 2 · exp

✓
� 1
48

✏

2 ·OPT

◆
.

(23)
We see that

n1(x) =
X

j2[m]

x[j] = n1(si)�
X

j2[m],si[j]=1

(1� x[j])+

+
X

j2[m],si[j]=0

x[j] = n1(si)� E

i

+ F

i

(24)

and hence

E[n1(x)] = n1(si)� E[E
i

] + E[F
i

]. (25)

Additionally we will use

8x, y 2 R |x� y| > a =) |x| > a/2 _ |y| > a/2. (26)

Now we can write

Pr
h���n1(x)� k

��� > 1
2
✏ ·OPT

i
(19)
=

= Pr
h���n1(x)� E[n1(x)]

��� > 1
2
✏ ·OPT

i
(24),(25)

=

= Pr
h���n1(si)� E

i

+ F

i

+

�n1(si) + E[E
i

]� E[F
i

]
��� > 1

2
✏ ·OPT

i (26)



 Pr
h���E

i

� E[E
i

]
��� > 1

4
✏ ·OPT _

_
���F

i

� E[F
i

]
��� > 1

4
✏ ·OPT

i


 Pr
h���E

i

� E[E
i

]
��� > 1

4
✏ ·OPT

i
+

+ Pr
h���F

i

� E[F
i

]
��� > 1

4
✏ ·OPT

i (22),(23)



 4 · exp
�
� 1

48
✏

2 ·OPT
� assum.

 4 · exp
�
� 122 lnn

48

� n�3
<

1
4
.

Now we can finish the proof of Theorem 5.1. By Lem-
mas 5.3 and 5.4 with probability at least 1/2 both H(x, S) 
(1+ 1

2
✏) ·OPT and H(y, x) = |n1(x)� k|  1

2
✏ ·OPT. By the

triangle inequality this implies that H(y, S)  (1 + ✏) ·OPT,
with probability at least 1/2 as required.

We conclude the section by combining Theorems 4.1 and 5.1
to get a faster PTAS.

Theorem 5.5. For each ✏ > 0 we can find (1 + ✏) ap-
proximation solution for the Minimax Approval Voting

problem in time n

O
⇣

log 1/✏

✏2

⌘

·poly(m) with probability at least
1� r, for any fixed r > 0.

Proof. First we run algorithm from Theorem 4.1 for
d = d 122 lnn

✏

2

e and p = r/2.
If it reports a solution, for every d

0  d we apply Theo-
rem 4.1 with p = r/2 and we return the best solution. If
OPT � d, even the initial solution is at distance at most
(1 + ✏)d  (1 + ✏)OPT from S. Otherwise, at some point
d

0 = OPT and we get (1+ ✏)-approximation with probability
at least 1� r/2 > 1� r.
In the case when the initial run of the algorithm from

Theorem 4.1 reports NO, we just apply the algorithm from
Theorem 5.1, again with p = r/2. With probability at least
1� r/2 the answer NO of the algorithm from Theorem 4.1
is correct. Conditioned on that, we know that OPT > d �
122 lnn

✏

2

and then the algorithm from Theorem 5.1 returns a
(1+ ✏)-approximation with probability at least 1� r/2. Thus,
the answer is correct with probability at least (1� r/2)2 >

1� r.
The total running time can be bounded as follows.

O⇤
 ✓

3
✏

◆ 244 lnn
✏2

!
✓ n

O
⇣

log 1/✏

✏2

⌘

· poly(m).

6. FURTHER RESEARCH
We conclude the paper with some questions related to

this work that are left unanswered. Our PTAS for Minimax

Approval Voting is randomized, and it seems there is no
direct way of derandomizing it. It might be interesting to
find an equally fast deterministic PTAS. The second question
is whether there are even faster PTASes for Closest String

or Minimax Approval Voting. Recently, Cygan et al. [10]
showed that under ETH, there is no PTAS in time f(✏)·no(1/✏)

for Closest String. This extends to the same lower bound
for Minimax Approval Voting, since we can try all values
k = 0, 1, . . . ,m. It is a challenging open problem to close the
gap in the running time of PTAS either for Closest String

or for Minimax Approval Voting.
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ABSTRACT
We study the di↵usion of opinions on a social network as an
iterated process of aggregating neighbouring opinions. In-
dividual views are modelled as vectors of yes/no answers
to a number of propositions connected by an integrity con-
straint, and each individual updates her opinion by looking
at the aggregated opinion of her influencers. We propose
and compare two alternative methods for such a process.
The first simply ignores the inconsistent aggregated opinion,
while the second performs propositionwise revisions whilst
maintaining consistency. We characterise the set of integrity
constraints that allow individuals to reach the aggregated
opinion of their influencers by means of propositionwise up-
dates, and we study under what conditions the termination
of the two proposed processes can be guaranteed.

CCS Concepts
•Computing methodologies ! Multi-agent systems;

Keywords
Social networks, judgment aggregation, opinion transforma-
tion, axiomatic method, strategy-proofness

1. INTRODUCTION
When faced with the opinions of others over multiple issues,
people will often be influenced to change their own opinions
in line with the opinions of their influencers. Social influ-
ence describes the e↵ect one person’s opinion can have on
the opinions of those around her, and in formal models of so-
cial influence, is often represented by means of an influence
or trust network. Taking inspiration from game-theoretic
models of social influence on networks [15, 14], a number of
di↵usion methods have been proposed for complex represen-
tations of individual opinions, such as preferences [3], beliefs
[29], or judgments [17]. A common characteristic of all these
settings is that changes in agents opinions are driven by the
aggregate opinions of their influencers in the trust network.
Thus, each agent has some initial opinion that might change
if the agent is connected to others in the network who dis-
agree with her on one or more issues.

Appears at: 4th Workshop on Exploring Beyond the Worst Case in
Computational Social Choice (EXPLORE 2017). Held as part of the Work-
shops at the 16th International Conference on Autonomous Agents and
Multiagent Systems. May 8th-9th, 2017. Sao Paulo, Brazil.

In complex settings, when individual opinions are formed
on multiple interconnected issues, a di↵usion process needs
to carefully account for the constraints that relate the issues
at stake. Recent work in the di↵usion of beliefs [12] realised
the importance of considering integrity constraints on the
set of opinions held by individuals. One of the central prob-
lems in this setting is the design of individual updates when
there are certain dependencies between issues, and aggre-
gating opinions might not always result in a rational opin-
ion. Consider a voter in the U.S. that will vote for Donald
Trump unless at least one of the following three conditions
are true: (a) Trump will actually build a wall separating
the U.S. from Mexico, (b) Trump was supported by Russia
in his campaign, and (c) Trump will continue to manage his
company during his presidency. Such a voter may be faced
with a third of her influencers believing only (a), a di↵erent
third believing only (b), and the remaining third believing
only (c). Hence, the voter can safely go ahead and vote for
Trump, since for each condition there is a two-third majority
of her influencers that is of the opinion that the statement is
false. However, none of her influencers vote for Trump, since
they all believe in at least one of the three conditions. How
should such an agent update her opinion, and what kind of
opinion updates might lead the agent to change opinion on
her vote?

In this paper we represent opinions as binary vectors,
building on work by Grandi et al. [17], generalizing this
setting to take into account possible correlations among the
issues at stake. We represent such correlations by means of
an integrity constraint, which prevents agents from holding
certain opinions over the set of issues. The addition of the
constraint to the framework is problematic in some cases, as
it prevents certain changes in opinion.

Related work.

Di↵usion on networks has been extensively studied in the
field of social network analysis, be it di↵usion of diseases,
information, or opinions [20, 8]. Some of these models are
developed to deal with the di↵usion of individual opinions, in
which individual views are updated by averaging the views
of neighboring individuals. Two classical such examples are
threshold models [18], with its more recent generalisations
[22, 23], and the De Groot or Lehrer-Wagner model [5, 25],
which are however based on a simple representation of opin-
ions as a binary view on a single issue, or a real-valued view
in the interval [0, 1]. Of particular interest is the recent work
of Friedkin et al.[12], which studies the propagation of real-
valued beliefs over multiple issues interconnected by logical



integrity constraints.
Building on this literature, a recent stream of papers have

adapted averaging models to more complex and realistic rep-
resentations of opinions: knowledge bases [29, 30], prefer-
ences over alternatives [13, 3], and binary evaluations [17].
The latter paper used techniques from judgment aggregation
(see, e.g., [19, 10]) and binary aggregation [16], representing
opinions as vectors of binary views on uncorrelated issues,
obtaining a di↵usion model assimilable to that of threshold
models. We build on this latter paper by adding a con-
straint connecting the multiple issues at stake, tackling the
non-trivial problem of updating individual opinions towards
one that does not satisfy the constraint.

We mention in passing that a logical perspective on dif-
fusion in social networks has been explored in a number of
papers (see, e.g., [2, 4, 31]). The strategic aspects of dif-
fusion have been studied in the related setting of product
adoption [32, 1], which however mostly focuses on threshold
models on uncorrelated products. Finally, our axiomatic
analysis draws inspiration from the work of Miller and Os-
herson [27], Knight and Johnson [24], and Dryzek and List
[7], who use the notion of inter-agent communication as a
mean of reconciling ideas from deliberative democracy with
those from social choice.

Paper overview.

The paper is organised as follows. In Section 2 we define
two mechanisms for opinion di↵usion with constraints on a
network. In Section 3 we examine the characteristics of the
opinion profiles which result from each of the two mecha-
nisms and in Section 4 we study the termination of the iter-
ative di↵usion processes we defined. In Section 5 we study
strategic aspects of the di↵usion processes, and in Section 6
we propose an axiomatic study of di↵usion as a judgment
transformation function. Section 7 concludes the paper and
points at directions for future work.

2. THE GENERAL FRAMEWORK
In this section we present two models of opinion di↵usion
in the presence of an integrity constraint. The first is a
straightforward generalization of the process of propositional
opinion di↵usion [17]. The second is instead based on up-
dates to single issues. We represent agents’ opinions as an-
swers to a set of yes/no questions which are possibly con-
nected by means of an integrity constraint. We model the
social influence network as a directed graph.

2.1 Individual Opinions
Let I = {p1, . . . , pm} be a finite set of m issues (or propo-
sitions), where each issue represents a binary choice. We
call D = {0, 1}I the domain associated with this set of is-
sues. For a finite set of agents, N = {1, . . . , n}, we say
Bi 2 D is the opinion of agent i 2 N over all issues in I.
A vector B 2 DN of all opinions of agents in N is a profile.
Each opinion B represents an agent’s acceptance/rejection
of each of the issues in I. For example, if our set of issues is
I = {p, q, r}, then B = (110) is the opinion which accepts
the first two issues p and q and rejects the third issue r. We
call flip(B, p) the opinion resulting from changing the judg-
ment on p in the opinion B. In our example above where
B = (110), flip(B, p) = (010).
We write Bi(p) to mean agent i’s judgment on p 2 I in

the profile B. Thus if B = (110), then B(p) = B(q) = 1

and B(r) = 0. We write B =�i B
0 to mean two profiles B

and B0 are identical if we ignore agent i’s opinion.
An integrity constraint IC ✓ D defines a domain of feasi-

ble opinions. For instance, if we have three issues, p, q and r,
and each agent can only accept at most two of the three, then
IC = {(110), (011), (101), (100), (010), (001), (000)}. Integrity
constraints are often represented compactly by means of a
formula of propositional logic, such as (¬p_¬q_¬r) for the
previous example. Issues of succinctness and computational
complexity are out of the scope of this paper, hence we as-
sume a set-theoretic representation of feasible opinions. For
each agent i, we assume that Bi 2 IC, meaning each indi-
vidual opinion must satisfy the given rationality constraint.

2.2 The Social Influence Process
We assume that agents are connected by a social influence
network G = (N , E) where (i, j) 2 E means agent i influ-
ences agent j and Inf(i)G = {j 2 N | (j, i) 2 E} is the set
of influencers of agent i in the network G. Observe that we
do not make any assumption on whether i 2 Inf(i), defining
the framework in full generality.

The first update procedure we propose is a direct general-
isation of the propositional opinion di↵usion (F -POD) pro-
posed by Grandi et al. [17], in which agents simply aggregate
the opinions of their influencers using some judgment aggre-
gation functions F = (F1, . . . Fn)—where Fi : IC

Inf(i) ! D
is the rule agent i uses—and copy this aggregate opinion
only if it satisfies the integrity constraint IC. Each step of
the process is done according to the function POD. This
function takes as input a network G, a profile of opinions
B 2 DN and an agent i 2 N . Note that we assume Fi is
resolute, meaning the function outputs a single opinion, and
we do not require the outcome of Fi to be a model of the in-
tegrity constraint. The POD function returns the updated
opinion of i according to her aggregation rule:

POD(G,B, i) =

(
Fi(BInf(i)) if Fi(BInf(i)) 2 IC

Bi otherwise.

We propose an alternative update, propositionwise opinion
di↵usion (F -PWOD), in which each agent updates on one
issue at the time, provided that the updated opinion is con-
sistent with the constraint. The function takes as additional
argument the issue p 2 I which agent i updates.

PWOD(G,B, i, p) =

8
><

>:

flip(Bi, p) if Fi(BInf(i))(p) 6= Bi(p)

and flip(Bi, p) 2 IC

Bi otherwise.

The two processes can result in two di↵erent updates, as
the following example shows:

Example 1. Three agents A,B,C, are voting on multi-
ple refenda. They need to give opinions on three proposals;
more parks in the city center, a homeless shelter and road
repairs. Because of budget constraints, they can approve at
most two of the proposals. Suppose the individuals are con-
nected in the following social influence network, where the
initial profile is B = (110, 011, 101), meaning A wants the
parks and a homeless shelter, B wants the homeless shelter
and road repairs, and C wants more parks and road repairs.



A : 110 B : 011

C : 101

Assume for each agent i, that Fi is the strict majority rule,
accepting an issue only if a strict majority of the individu-
als accept it. If all agents update using the F -POD func-
tion, the resulting profile after one update will be B0 =
(110, 011, 011). If each agent uses the F -PWOD function
instead, and we suppose they all update on the first issue,
we get a di↵erent outcome after the first iteration—B0 =
(110, 011, 001).

2.3 The Iterative Process
A permissible transformation associates a profile of individ-
ual opinions with one of the possible outcomes of either a
F -POD or an F -PWOD update:

Definition 1. Let a network G, an integrity constraint
IC, and a set of aggregators Fi for i 2 N be given. We
say there is a permissible F -POD transformation from pro-
file B to profile B0 if there exists I ✓ N such that B0

i =
POD(G,B, i) for all i 2 I, and B0

j = Bj for all j 62 I.
Analogously, there is a permissible F -PWOD transforma-
tion from B to B0 if there exists I ✓ N and pi 2 I for each
i 2 I such that B0

i = PWOD(G,B, i, p), and B0
j = Bj for

all j 62 I.

We say that a permissible transformation is e↵ective if
there is some i 2 N such that Bi 6= B0

i. We further say that
a profile B is a termination profile if no e↵ective transforma-
tion exists. An agent’s opinion Bi is called stable on a net-
workG (wrt. F ) in profileB if for any p, F -PWOD(G,B, i, p) =
Bi. Thus, a termination profile is a profile in which all in-
dividual opinions are stable.

Both F -POD and F -PWOD update functions can be
used to define di↵usion processes with discrete time. Let
turn : N ! 2N be a turn function, indicating at each point
in time t what are the agents that are updating their opin-
ions. Let Bt = (Bt

1, . . . , B
t
n) be the profile of opinions at

time t. At time t+ 1, all and only the agents in turn(t+ 1)
will perform an F -POD update aggregating the opinions of
their influencers:

Bt+1
i = POD(G,Bt, i).

An additional ingredient is required for F -PWOD. Let
propi : N ! I for each i 2 N be a function which tells us
which proposition agent i is allowed to update at any time t.
At each time t all agents in turn(t) update their opinion
according to the aggregated opinion of their influencers at
time t� 1 on issues propi(t):

Bt+1
i = PWOD(G,Bt, i, propi(t+ 1))

for all i 2 turn(t + 1). Following Definition 1, there is a
permissible transformation between each step of the di↵u-
sion process, i.e., each pair of profiles Bt and Bt+1. Observe
that if B is a termination profile and at time T we have that
BT = B then it is the case that Bt = BT for all t � T .

3. TERMINATION PROFILES
In this section we focus on the properties of termination
profiles and under which conditions F -POD and F -PWOD
result in the same termination profiles. We characterise the
set of integrity constraints for which F -PWOD termina-
tion profiles agree with the outcome of the respective aggre-
gation functions, and we show that for both F -POD and
F -PWOD, an agent’s opinion at termination may be very
distant from the opinions of her influencers.

3.1 Integrity Constraints with Open Structure
Given two opinions B and B0 2 D, recall that the Hamming
distance between them is H(B,B0) = ⌃p2I |B(p)�B0(p)|.

Definition 2. An integrity constraint IC has an open
structure if for any two opinions B,B0 2 IC where H(B,B0) =
k, there is some sequence of distinct opinions B1, . . . , Bk+1—
all in IC—such that B1 = B, Bk+1 = B0, and H(Bi, Bi+1) =
1 for all 1  i  k.

To visualise the idea underlining the above definition, we
model the opinions on a hypercube. An edge between any
two nodes means the Hamming distance between them is
1. An integrity constraint has an open structure if any two
nodes at distance k are connected by a path of length ex-
actly k.

Example 2. We represent all opinions in the graph be-
low, connecting only those that satisfy IC with a continu-
ous edge. Let IC = {(000), (001), (010), (100), (011), (111)}.
This integrity constraint does not have an open structure,
and this can be visualised on the figure: the shortest path
available between (100) and (111) is of length 4, which is
strictly greater than the Hamming distance between the two
models H(100, 111) = 2.

000

001

010

011

100

101

110

111

An important class of integrity constraints that has an
open structure is the one used to represent preferences as
linear orders over a set of alternatives (see, e.g., [28]). Let
us see this example in details. Let A be a set of alternatives,
a linear order is an irreflexive, transitive and complete binary
relation over A. A linear order � can be represented as a
binary evaluation over a set of issues IA = {pab | (a, b) 2
A⇥A and a 6= b}, such that B(pab) = 1 if and only if a � b.
For each pair (a, b), we only include one of pab and pba in
the issues as rejecting pab in a linear order is equivalent
to accepting pba and vice versa. The integrity constraint
IC� therefore contains all opinions over IA corresponding
to linear orders over A.1 We can now prove the following:

Proposition 1. IC� has an open structure.
1Representing preferences with binary evaluations is an idea
that can be traced back to the work of Wilson [33].



Proof. Let B and B0 be two distinct opinions in IC�
such thatH(B,B0) = k, and let� and�0 be the correspond-
ing linear orders. Since the two orders� and�0 are di↵erent,
they also di↵er on pair which is adjacent in one of them, i.e.,
there exists a pair ab such that B(pab) 6= B0(pab) and there
is no c 2 A such that a �i c �i b or b �i c �i a.

2 Swapping
an adjacent pair in a linear order results in a binary rela-
tion that still is a linear order, hence flip(B, pab) 2 IC�. By
repeating updates on adjacent pairs we can therefore build
a sequence of propositionwise updates of length k from B
into B0.

3.2 F -Consistent Termination
We now give a formal definition that we will use to char-
acterise integrity constraints on which the outcome of the
propositionwise di↵usion process matches the outcome of
the rule F , if this outcome satisfies integrity constraint.

Definition 3. An opinion di↵usion process is said to be
F -consistent on a network G if for all termination profiles
B it is the case that for any i 2 N : if F (BInf(i)) 2 IC, then
Bi = F (BInf(i)).

Clearly F -POD is F -consistent. We show that the same
holds for F -PWOD if and only if IC has an open structure.

Proposition 2. F -PWOD is F -consistent if and only if
IC has an open structure.

Proof. For the right to left direction, we first assume
that IC has an open structure. Suppose further F -PWOD
terminates on a profile B and F (BInf(i)) 2 IC, and suppose
for contradiction that F -PWOD is not F -consistent. That
is, there is some agent i 2 N such that B0

i 6= Fi(BInf(i)).
If Fi(BInf(i)) 2 IC, then since IC has an open structure,
there must be some p 2 I s.t. Fi(BInf(i))(p) 6= Bi(p) and
flip(Bi, p) 2 IC. By Definition 1, this implies the existence
of a permissible and e↵ective transformation from B to a
second profile B0 by having i updating on p, against the
assumption that B is a termination profile.

For the left to right direction, suppose that IC does not
have an open structure. Then it must be the case that there
are two opinions B,B0 such that H(B,B0) = k and all paths
of opinions in IC connecting them has length at least k + 1.
By the pigeonhole principle, this implies the existence of
two distinct opinions B00 and B000, possibly equal to B and
B0, such that there is no p 2 I where B00(p) 6= B000(p) and
flip(B00, p) 2 IC. Let now N = {1, 2}, E = {(1, 2)}, and
B = (B000, B00). Observe that B is a termination profile,
since F (BInf(2)) = B000 and by construction there is no p such
that B00(p) 6= B000(p) and flip(B00, p) 2 IC. But B00 6= B000

and therefore F -PWOD is not F -consistent.

Proposition 2 shows that if aggregating an agent’s influ-
encers using F gives an opinion in the set IC, F -PWOD will
eventually reach a state where each agent’s opinion is equiv-
alent to the outcome of F . We can in fact make a stronger
claim if we know an agent’s sources have stable opinions:

Proposition 3. Let i 2 N and B be a profile on G. If
all j 2 Inf(i) have stable opinions in B and IC has an open
structure, then for any F -PWOD termination profile B00

and F -POD termination profile B0, both resulting from B,
we have that H(B00

i , F (B00
Inf(i)))  H(B0

i, F (B0
Inf(i))).

2This result is folklore, a formal proof can be found in [9].

Proof. If all agents in Inf(i) have stable opinions on
G, then F (B00

Inf(i)) = F (B0
Inf(i)) = F (BInf(i)). Suppose

F (BInf(i)) 2 IC. By Proposition 2, F -PWOD ensures that
at termination B00

i = F (BInf(i)), and the same will hold for
F -POD. Suppose F (BInf(i)) 62 IC. Then B0

i = Bi. If
F -PWOD is not able to perform any updates, B00

i = Bi as
well, but if even one update is performed, H(F (B00

Inf(i)), B
00
i ) <

H(F (B0
Inf(i)), B

0
i).

Although the assumption of IC having an open structure
guarantees that F -PWOD will be able to make at least as
many updates as F -POD when faced with an outcome which
does not satisfy the constraint, this might in some cases
simply mean that neither F -PWOD nor F -POD will be
able to update. In the worst case, this means that an agent
will end up with an opinion that is very distant from the
opinions of her influencers.

Proposition 4. For any number of issues m, there is al-
ways some IC with open structure such that we can construct
a network G and a F -PWOD termination profile B where
an agent i is at distance m� 2 from F (BInf(i)).

Proof. Let I = {p1, . . . , pm} and IC = (¬p1 ^ ¬pm) !
(p2^, . . . ,^pm�1), i.e. IC allows all opinions except those
which reject the first and last issue and at least one other
issue.We slightly abuse our notation and say that B0 is the
opinion which rejects all issues, Bk only accepts the kth
issue, and B⇤ rejects the first and last issue, but accepts all
others.

Let Fi be the strict majority rule. We first show that we
can construct a network and termination profile such that
there is an agent who is at distance m�2 from the outcome
of Fi over her influencers. Take the following network G and
profile B:

B1 B1 Bm Bm B⇤

i : B⇤

Here Fi(BInf(i)) = B0 6|= IC. However, for any issue on
which agent i does not agree with the majority, namely p2
to pm�1, she cannot update her opinion without ending up
in one of the opinions prohibited by IC.

We now show such an IC must have an open structure.
Let B,B0 |= IC. Suppose both B and B0 accept the first
(last) issue. Then since all opinions accepting the first (last)
issue satisfy IC, we can freely move between the two by
performing updates to single propositions. If both B and B0

reject both the first and the last issue, then B = B0 = B⇤
as this is the only opinion which satisfies IC.

Thus, we only need to check if there is a required sequence
of opinions between B and B0 if they disagree on either the
first issue or the last. W.l.o.g., suppose they disagree on
the first issue and B rejects the first issue and B0 accepts
it. Then B can update on the first issue before performing
any other updates, as flip(B, p1) satisfies IC. Now since,
flip(B, p1) and B0 both accept the first issue, there must
be a sequence of opinions from flip(B, p1) to B0 where the
distance between any two successive opinions is 1 and each
satisfies IC. Further, since H(B,flip(B, p1)) = 1, we can
conclude that the constructed sequence has length exactly
H(B,B0) + 1.



Note that in the construction in Proposition 4, F -POD
would result in the same termination profile.

4. TERMINATION OF ITERATIVE
OPINION DIFFUSION

In this section we compare the two proposed di↵usion models
with respect to the termination of the associated iterative
process. We first need to introduce a number of definitions.

Recall that by fixing a turn function and functions propi
for i 2 N , deciding which agents are updating and on which
issues, we can define iterative processes associated to F -POD
and F -PWOD. The following definitions are straightfor-
ward adaptations of those proposed by Brill et al. [3]. We
call an iterative process asynchronous if |turn(t)| = 1 for all
t 2 N, and synchronous if turn(t) = N for all t 2 N. We
say that the iterative process F -POD or F -PWOD univer-
sally terminate on a class of graphs E if for all G 2 E and
each initial opinion profile B there does not exists an infinite
sequence of e↵ective transformations starting from B. We
say that F -POD or F -PWOD asymptotically terminate on
a class of graphs E if for all E 2 E and profiles B the fol-
lowing condition holds: from all profiles B0 reachable from
B there exists a path of permissible transformations lead-
ing to a termination profile. When both the turn and propi
functions select an agent and an issue uniformly at random,
asymptotic termination implies that the probability of even-
tually reaching a termination state tends to 1 as t goes to
infinity. Finally, a consensual termination profile is a profile
B such that for all i, j 2 N we have that Bi = Bj .

Aggregation functions Fi are typically classified by means
of axiomatic properties. A full-blown analysis of the influ-
ence of these properties on termination is out of the scope
of this paper, but we still need one such definition. We say
that an aggregator Fi is unanimous for agent i if, when-
ever Bj = B⇤ for all j 6= i then Fi(B) = B⇤. In words,
whenever all influencers (excluding the updating agent) are
unanimous, F updates according to the influencers.

4.1 Simple cycles
A simple cycle is a finite network E such that every agent has
exactly one outgoing edge and exactly one incoming edge.

Proposition 5. If G is a simple cycle and Fi are unani-
mous, then asynchronous F -POD terminates asymptotically
to a consensual termination profile.

Proof. Let B0 be a profile on the simple cycle G, where
E = {(1, 2), . . . , (i, i+1) . . . , (n, 1)}. Let i⇤ 2 N be such that
B0

i⇤ 6= B0
i⇤+1. If such an agent does not exists then the pro-

fileB is already a consensual termination profile. Let us now
define the following turn function. Let turn(t) = i⇤ + t+ 1,
for t = 0, . . . , n�1. Since B0

i⇤ satisfy the integrity constraint
by assumption, and all Fi are unanimous aggregators, then
at each iteration step t agent i⇤+ t+1 will copy the opinion
of agent i⇤+ t, obtaining a consensual termination profile at
t = n�1 in which all agents have the same opinion B0

i⇤ .

The same result holds for F -PWOD, albeit under addi-
tional assumptions on the integrity constraint:

Proposition 6. If G is a simple cycle, F is unanimous,
and IC has an open structure, then asynchronous F -PWOD
terminates asymptotically to a consensual termination pro-
file. The same holds for synchronous F -PWOD if |I| � 2.

Proof sketch. Let B0 be a profile on G, and let i⇤ 2 N
be such that B0

i⇤ 6= B0
i⇤+1. Since IC has an open structure,

there is a sequence of propositionwise updates of length k =
H(B0

i⇤ , B
0
i⇤+1) that transforms the latter opinion into the

former. By defining turn(t) = i⇤ + 1 for t = 0, . . . , k, and
propi according to the sequence above, we obtain a resulting
profile Bk such that Bk

i⇤+1 = B0
i⇤ and Bk

j = B0
j for all

j 6= i⇤ + 1. The process can then be repeated for i⇤ + 2,
and sequentially until reaching again agent i⇤, to obtain a
consensual termination profile in which all agents have the
same opinion B0

i⇤ .
The proof for synchronous F -PWOD uses the same con-

struction as above, setting the propi functions to update on
irrelevant issues for the non updating agents.

Observe that the set of termination profiles that can be
reached starting from the same profile of initial opinions can
be di↵erent depending on whether we are using F -POD or
F -PWOD. In particular, while the former leads to profiles
that are consensual on opinions that are already present in
the initial profile, the second can result in consensual profiles
on opinions that are a combination of the initial ones.

4.2 Directed acyclic graphs
A directed acyclic graph (DAG) is a directed graph that
contains no cycle involving two or more vertices. A simple
argument of propagation allows us to prove the following:

Proposition 7. If G is a DAG, then both synchronous
and asynchronous F -POD and F -PWOD converge univer-
sally.

Proof sketch.. We define potential functions hi for each
node i, as follows: hi(t) = H(Bt

i , Fi(BInf(i)), measuring the
distance between an individual’s opinion and the aggregated
opinion of its influencers. Each e↵ective transformation un-
der both F -POD and F -PWOD decreases one such func-
tion, the one of the updating agent, and possibly increases
others, those of the agents influenced by the one updating.
By ordering such potential functions based on the distance
from a node to a source, which is possible given the assump-
tion that G is a DAG, we obtain a lexicographic ordering
of all functions hi that decreases strictly with each e↵ective
transformation. Therefore, for any set of aggregators Fi

and any DAG it is impossible to build an infinite sequence
of F -POD or F -PWOD e↵ective transformations.

4.3 Complete graphs
Let a complete graph be such that E = N ⇥N . Observe in
particular that this means i 2 Inf(i) for each i 2 N . Using
an idea from Farnoud et al. [11], we are able to show the
following:

Proposition 8. If G is the complete graph, then both
synchronous and asynchronous F -POD and F -PWOD con-
verge universally.

Proof. On a complete graph the set of influencers Inf(i) =
N for all i. Let therefore h(t) =

P
i H(Bi, F (B)) be a po-

tential function that measures the overall distance of the
individual opinions from the overall aggregated one. Every
e↵ective transformation for both F -POD and F -PWOD de-
creases the value of h, hence obtaining the desired result.

A general result on the asymptotic convergence of F -POD
or F -PWOD is an open problem. A proof similar to the



one used by [3] could be adapted to show that F -PWOD
asymptotically converges on any graph, provided that at
any point in time the aggregated opinion of any set of in-
fluencers satisfy the integrity constraint. This assumption
seems however too restrictive for di↵usion processes that are
designed to deal with integrity constraints. Universal con-
vergence cannot be guaranteed even on simple cycles, for
both F -POD and F -PWOD, at least when more than two
issues are present. To see this it is su�cient to consider a
simple cycle with only one agent having opinion 11 and all
others 00, and devise turn and propi functions that make
the 11 opinion turn in the cycle whilst keeping all other
opinions at 00.

4.4 Update Order Dependence
When updating on single propositions at a time, even with
all agents updating synchronously, the order in which each
agent updates their opinions matters in determining what
the possible termination profiles look like. Consider for in-
stance the following example:

Example 3. Let a network and a profile of opinions be
as in the figure below and let IC = D \ {(111)}.

A : 101 B : 011

D : 000 E : 000

C : 110

Two agents with the same initial opinion can have the same
set of influencers yet end up with di↵erent opinions in a
termination profile, depending on the order in which they
update their opinions on the issues. We can see this with
agents D and E who have the same initial opinion. In our
case if D updates the issues in the order p, q, r, obtaining
110, and E in the order r, q, p, obtaining 011, these will be
their opinions in the termination profile.

Similar situations occur when an integrity constraint blocks
the update on a certain set of issues, even though the result
of the majority rule is consistent. This does not happen with
IC with open structure, as can be shown in the following
proposition. Recall from Section 2 that by fixing a function
propi for each individual i we obtain an iterative di↵usion
process. We say that the propi functions are balanced if all
profiles at which the iterative process stabilizes, i.e., when
there is a T such that Bt = BT for all t � T , then BT is
a termination profile.

Proposition 9. If IC has an open structure, that IC is
guaranteed to be satisfied by the outcome of F , and that no
ties will occur at any iteration step, then on any directed
acyclic graph any choice of balanced propi functions results
in the same termination profile as F -POD.

Proof sketch. By Proposition 2, if IC has an open struc-
ture and the outcome of F is guaranteed to satisfy the
integrity constraint, then the process will converge to the
result of aggregating the influencers’ opinions via F . By
Proposition 7 we know that the iterative process on DAGs
converge, and by a simple algorithm of propagation from
the sources we can also show that the iterative F -PWOD
process stabilises on a termination profile that is uniquely
determined by the initial profile B0.

Proposition 9 does not generalize to arbitrary network
containing cycles. Consider the following example:

Example 4. Let G be as depicted in the figure below, and
let there be no integrity constraint, i.e., IC = D.

A : 11 B : 00

Suppose in the first round of updates, agent A updates on
the first issue, and B on the second issue. In the second
round, A updates on the second issue, and B on the first
issue. PWOD will then terminate on the unanimous profile
(01), (01). However if the agents switch the order of updates
(A updates the second issue first, then the first issue, simi-
larly for B), we arrive at the profile (10), (10).

5. STRATEGIC MANIPULATION
In this section we examine the possibility of a strategic agent
guiding the outcome of a di↵usion process by misreporting
her initial opinion. We limit our attention to the source
agents when considering possible cases of manipulation, as
these are the only agents in the network who are in a sense,
sure about their opinion and will only change it for strategic
reasons.

We assume agents’ preferences are defined by means of the
Hamming distance wrt. their initial opinion (this is one of
many possible choices, see, e.g., [6]). Each agent i with ini-
tial opinion Bi is associated with a weak ordering ⌫i defined
as follows: B ⌫i B0 if and only if H(B,Bi)  H(B0, Bi),
i.e., when the Hamming distance between her truthful opin-
ion and B is less than or equal to the distance between her
truthful opinion and the opinion B0. In what follows we pro-
vide two examples in which a source agent is able to guide
the influence process to obtain a resulting opinion profile
where agents influenced by her have opinions closer to hers
if compared to the outcome of the di↵usion process had she
been honest about her opinion.

We begin by showing how F -POD can manipulated in
presence of an integrity constraint.

Example 5. Let there be four agents, and let D \ IC =
{111}, i.e. let (111) be the only forbidden opinion. Let the
network and the profile be defined as below:

A : 011 B : 101 C : 110

D : 100

Suppose FD is the strict majority rule, resulting in an ag-
gregated result of (111), and no update for agent D. Then
agent A will benefit by reporting (010) instead of her truth-
ful opinion above: in the truthful profile D does not update,
keeping her opinion which is at distance 3 from A’s opinion,
while in the second profile D updates to (110), which is at
distance 2 from A’s truthful opinion (011).

The situation is similar for F -PWOD, except that a po-
tential manipulator needs to know the order of updates on
the issues in advance to be sure of the e↵ect of her manipu-
lation.

Example 6. Let IC = {111, 100, 010, 001, 011, 000}. Let
the network and the profile be defined as follows:



A : 111 B : 011 C : 100

D : 000

If agent D updates first her opinion on p1 then p2 then p3,
then her opinion at termination will be (100). If agent A
knows this is the order in which D will perform the updates,
it is in her interest to report the opinion (011) instead of her
truthful opinion (111), as this results in the opinion (011)
for agent D at termination. Note however that if agent D
updates in a di↵erent order, say first p3 then p2 then p3,
then D’s opinion at termination is (111) and it is in agent
A’s interest to keep her initial opinion.

6. TRANSFORMATION FUNCTIONS
A transformation function is one way of representing opin-
ion change among a group of agents. Following the defini-
tion of List [26], such a function takes as input a profile of
opinions B and outputs a second profile B0, representing
the influenced or updated opinions. One example of such a
transformation function T is deference to unanimity, where
Ti(B) – the transformed opinion of agent i – accepts only
those issues unanimously accepted by all agents in B. In
this section, we adapt this definition to take into account the
network relating the individuals, and we adapt the axioms
initially proposed by List [26], and subsequently formalized
by Grossi and Pigozzi [19], to this setting.

6.1 Opinion Transformation on a Network
Given a social influence network and a profile corresponding
to the opinions of the agents in the network, a network-based
opinion transformation function returns a profile which com-
prises the updated opinions of each agent in the network.
Formally (recall that D is the set of all individual opinions):

T : DN ⇥ 2(N⇥N ) ! DN .

The propositionwise opinion di↵usion mechanisms defined
in Section 2 can be viewed as network-based opinion trans-
formation functions. Given a set of issues I, agents N ,
an integrity constraints IC ✓ D, and an influence network
G = (N , E), for any p 2 I we can define a transformation
function T where:

Ti(B, G) = F -PWOD(G,B, i, p).

With p corresponding to propi(t), at any time t of the iter-
ative di↵usion process.

6.2 Axioms for Opinion Transformations
In this section we adapt some of the axioms proposed by List
[26] to the current setting, and we propose novel network-
specific properties. We begin with the following straight-
forward adaptation of some classical axioms. Note that by
Ti,p(B, G) we mean the opinion of agent i on p in the trans-
formed profile.

Rationality: for all networksG 2 G, agents i 2 N , profiles
B 2 ICN we have that Ti(B, G) 2 IC.3

Unanimity: for all networks G 2 G and opinions B⇤ 2 D,
if it is the case that Bi = B⇤ for all agents i 2 N , then
Ti(B, G) = B⇤ for all i 2 N .

3Observe that IC is a parameter of this axiom.

Responsiveness: for all networks G 2 G and agents i 2
N , there exist two profiles B,B0 2 DN such that
B =�i B

0, Bi 6= B0
i and Ti(B, G) 6= Ti(B

0, G).

Independence: for all networks G 2 G, issues p 2 I,
and pairs of profiles B,B0 2 DN , if it is the case
that Bi(p) = B0

i(p) for all i 2 N then Ti,p(B, G) =
Ti,p(B

0, G) for all i 2 N .

Monotonicity: for all networks G 2 G, issues p 2 I,
and pairs of profiles B,B0 2 DN , if for i, j 2 N ,
B =�j B0, Bj =�p B0

j , B(p) = 0 and B0(p) = 1,
then Ti(B, G)(p) = 1 ) Ti(B

0, G)(p) = 1.

Rationality states that if the input to the transformation
function is a profile of rational opinions, then the outcome of
the transformation should be a profile of rational opinions.
Unanimity states that if every opinion in the input profile
is the same, then the function simply outputs this same
profile. A transformation function is Responsive if there
are two profiles in which only agent i changes her opinion,
and her opinion in the outcome is di↵erent for the two pro-
files. Independence states that the opinion an agent has on a
proposition p in the outcome of the transformation function
depends only on agents’ opinions on p in the input profile.
Monotonicity requires that for any agent i, if they accepted
a proposition p in the outcome of a transformation function
T applied to a profile B, then added support to this propo-
sition in a profile B0 should imply that p remains accepted
by agent i in the outcome of T .

Several of the axioms for transformation function have
counterparts in judgment aggregation. For example, the
Monotonicity Axiom for network-based transformation func-
tions simply states that the aggregation function each agent
uses must satisfy Monotonicity as defined for aggregation
functions.

We now give three axioms that are specifically defined for
transformations on a social network.

Influencer-Unanimity: for all networks G 2 G, opinions
B⇤ 2 D, and agents i 2 N , if for all agents j 6= i 2
Inf(i) we have that Bj = B⇤ then Ti(B, G) = B⇤.

Influencer-Independence: for all networksG 2 G, issues
p 2 I, agents i 2 N , and profiles B,B0 2 DN , if it
is the case that Bj(p) = B0

j(p) for all j 2 Inf(i) then
Ti,p(B, G) = Ti,p(B

0, G).

Exclusiveness: for all networks G 2 G, agents i 2 N , and
profiles B,B0 2 DN , if [8j 2 Inf(i) [ {i} : Bj = B0

j ],
then [Ti(B, G) = Ti(B

0, G)].

Influencer-Unanimity states that if all influencers of an
agent submit the same opinion in the input to the transfor-
mation function, then the agent submits that same opinion
in the output profile. Influencer-Independence states that a
transformation function is Independent with respect to the
opinions of an agent’s influencers. For the complete network
where Inf(i) = N for all agents i, Influencer-Independence
corresponds to Independence. Finally, a transformation func-
tion is Exclusive if an agent’s opinion in the output of the
transformation function depends only on her own opinion
and the opinions of her influencers in the input profile. This
means that someone who is not an influencer of an agent
cannot play any role in the opinion update of this agent at
any step in the di↵usion.



6.3 Majority PWOD
The aggregation rule FMaj, which accepts only the issues
accepted by a (strict) majority of agents, is the strict ma-
jority rule, and is defined such that for any proposition
p, FMaj(B)(p) = 1 if and only if

��NB
p

�� > n
2 , where NB

p

is the set of agents who accept p in the profile B.4 Let
Maj-PWOD be the propositionwise opinion di↵usion model
in which each agent uses the strict majority rule to update,
i.e., where Fi = FMaj for all i 2 N . By definition, F -POD
and F -PWOD for any F satisfy Rationality and Exclusive-
ness. The same holds for Responsiveness as agents must
always take into account their own opinion to ensure that
changes can be made on a subset of I while still satisfying
the constraint. Though the majority judgment aggregation
rule satisfies Independence and Unanimity, the proposition-
wise updates lead to a violation of the corresponding axioms
for transformation functions.

Proposition 10. The Maj-PWOD transformation func-
tion is rational, unanimous, responsive and monotonic. It
does not satisfy independence, influencer-independence, or
influencer-unanimity.

Proof. As noted above, Maj-PWOD satisfies Rational-
ity and Exclusiveness by definition. Moreover, it is straight-
forward to observe that Unanimity is also satisfied, as if
every agent submits the same ballot B, then any agent i
will agree with her influencers on any proposition p and will
never change her opinion.

For Monotonicity, suppose for profiles B and B0 that for
i, j 2 N , B =�j B0, Bj =�p B0

j , Bj(p) = 0 and B0
j(p) = 1,

and further, that Ti,p(B, G) = 1. If j 6= i and j 62 Inf(i) we
know Ti,p(B

0, G) = Ti,p(B, G) because Maj-PWOD is Ex-
clusive. If j 2 Inf(i), then Ti,p(B, G) = 1 means there was
a majority of acceptances for p among agent i’s influencers,
or there was a majority of rejections but a change in opinion
was blocked by IC. If it is the former, we know that an addi-
tional acceptance for p in B0 means it remains the case that
Ti,p(B

0, G) = 1. If it is the latter, then it must have been
the case that Bi(p) = 1 and thus B0

i(p) = Ti,p(B
0, G) = 1.

Now suppose i = j. If j 2 Inf(i), then the only way
Ti,p(B

0, G) = 0 is if there is a majority of rejections for p
among agent i’s influencers, but since no agent but i changes
her opinion, this cannot be the case. If i 62 Inf(i) we fall back
into the first case we analysed.

We provide a counterexample to show that Influencer-
Unanimity fails. Let there be two issues I = {p, q} and
suppose IC = p ! q. Let G be the following network and
B the profile shown in the network below:

i: 00

a:11 b:11 c:11

Let p be the issue agent i is updating. Then Ti(B, G) = Bi

as an update to p would lead to an opinion which does not
satisfy the constraint, falsifying Influencer-Unanimity.

Take now a second profile B0 that coincides with the
one described above, with the exception that B0

i = (01),

4Here we take n to be the number of opinions in the input
to the aggregation rule and not the total number of agents
in the network.

hence such that B =�i B0. We have that Ti,p(B, G) = 0,
since the update is blocked by the integrity constraint, while
Ti,p(B

0, G) = 1, falsifying Independence.
Influencer-Independence also fails, as can be seen in the

following example. Take two profiles B,B0 2 DN , and let
Bj(p) = B0

j(p) = 1 for all j 2 Inf(i) for some agent i. Sup-
pose i 62 Inf(i) and let Bi = (10), B0

i = (01). Further,
let IC = {(01), (10)}. Then, even if FMaj(BInf(i))(p) =
FMaj(B

0
Inf(i))(p) = 1, we still have that Ti(B, G) = (10)

while Ti(B
0, G) = (01), contradicting the axiom of Influencer-

Independence.

7. CONCLUSIONS AND FUTURE WORK
In this paper we have introduced and studied two models for
opinion di↵usion on multiple binary issues connected by an
integrity constraint. Propositional opinion di↵usion F -POD
updates on all issues at the same time, provided that the
aggregated opinion of one’s influencers satisfy the integrity
constraint. Propositionwise opinion di↵usion F -PWOD, in-
stead, updates on one issue at the time towards the aggre-
gated opinion of the influencers, provided that this single
change satisfies the integrity constraint. We have charac-
terised the set of integrity constraints on which F -PWOD
coincides with F -POD at termination of the di↵usion pro-
cess, and compared the two processes on the distance be-
tween an agent’s opinion and the one of her influencers.
We have given su�cient conditions for the termination of
the iterated di↵usion process, and provided initial results on
the strategic abilities of source agents in the network. We
also adapted axiomatic conditions for profile transformation
functions, previously defined in judgment aggregation, to
take into account a social network relating the individuals,
and used these novel formulations to analyze the majoritar-
ian propositionwise opinion di↵usion method.

This paper poses a number of open questions, and sug-
gests fascinating directions for future research. First, obtain-
ing termination results for arbitrary integrity constraints, or
characterising the set of constraints that guarantee termina-
tion on arbitrary networks, would be a major advancement.
Techniques from finite Markov chains may be useful in such
proofs (see, e.g., [21]). Second, the interplay between the
properties of the aggregators, the structure of the integrity
constraints, and the network, need to be investigated fur-
ther. Third, issues of succinctness and computational com-
plexity should be tackled. Once the integrity constraint
is represented as a logical formula, a number of strategic
questions related to influence maximisation may become in-
tractable.
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ABSTRACT
There is increasing interest in promoting participatory democ-
racy, in particular by allowing voting by mail or internet
and through random-sample elections. A pernicious con-
cern, though, is that of vote buying, which occurs when a bad
actor seeks to buy ballots, paying someone to vote against
their own intent. This becomes possible whenever a voter
is able to sell evidence of which way she voted. We show
how to thwart vote buying through decoy ballots, which are
not counted but are indistinguishable from real ballots to a
buyer. We show that an Election Authority can significantly
reduce the power of vote buying through a small number of
optimally distributed decoys, and model societal processes
by which decoys could be distributed.

CCS Concepts
•Computing methodologies ! Multi-agent systems;

Keywords
vote buying, elections, opinion aggregation

1. INTRODUCTION
The goal of participatory democracy [9, 11] is to engage

citizens more frequently and with more granularity in the
decision-making processes of government bodies. Technolo-
gies that can help with this transition are those that support
voting from the home by mail or over the internet, and that
make use of random sample elections, in which a representa-
tive subsample of the population is tasked with voting on a
particular issue, allowing participatory democracy to func-
tion without everyone needing to be concerned with every
issue.

A pernicious concern, though, is that of vote buying, where
a bad actor attempts to gain improper influence in an elec-
tion by purchasing ballots from voters and paying them to
vote against their intent. The practical implications of this
are manifold, since the social construct of elections relies on
the perception of reliability and fairness. Vote buying has
been an everlasting threat to democracy; for example, a sur-
vey shows that in the 1996 Thai general elections “one third

Appears at: 4th Workshop on Exploring Beyond the Worst Case in
Computational Social Choice (EXPLORE 2017). Held as part of the Work-
shops at the 16th International Conference on Autonomous Agents and
Multiagent Systems. May 8th-9th, 2017. Sao Paulo, Brazil.

of households were o↵ered money to buy votes at the last
general election” [13]. Scha↵er [14] mentions that“[Vote buy-
ing]... is making an impressive comeback...it seems, a blos-
soming market for votes has emerged as an epiphenomenon
of democratization”. New technologies can make the situa-
tion worse. For example, web platforms can serve as middle-
men, digital currency supports anonymous payments, and
abundant data coupled with machine learning can help buy-
ers discover entrapment schemes as well as identify voters to
target with o↵ers.

In this paper, we show that vote buying can be thwarted
by distributing decoy ballots, which are not counted, in ad-
dition to real ballots. A vote buyer will not know whether a
ballot is real or decoy, and thus, decoys (if sold) may deplete
a buyer’s budget. Voters who know that they have a decoy
ballot are motivated to sell their ballots to a buyer, both for
reasons of profit and out of civic duty, wanting to maintain
the integrity of an election. Decoy ballots have been sug-
gested by Chaum [4], but we are not aware of any analysis
of how decoy ballots should be distributed, and how e↵ective
they are against vote buying.

We assume that real ballots impose a very high cost on
society, for the reason that it takes e↵ort for members of
society to become informed about an issue and vote appro-
priately, thus representing their considered opinion on an
issue.1 Without the willingness to invest this e↵ort, meth-
ods of participatory democracy may ultimately fail. For
example, a simple calculation for the US shows that if we as-
sume that 200M people will participate, and there are about
12,000 issues to decide per year,2 then assuming that voters
are willing to engage three times a year, we have a maxi-
mum of 50,000 voters per issue. At this scale, vote buying,
especially on contentious issues, may pose a severe problem.

Turning to decoy ballots, we model these as costly but
not so costly that the number of decoys to distribute cannot
be considered as a design decision of the Election Authority.
The cost of decoys comes about because, to be e↵ective,
voters need to be willing to go to the e↵ort to sell the ballot
(and thus, cast the ballot and prove which way it was cast)
if approached by a buyer. But because any ballot cast is not
ultimately counted, there is less emphasis on a voter needing
to research an issue to form an opinion.

Although we situate our discussion in a societal context,

1In some approaches, this cost comes about, in addition, as
a result of needing to physically mail ballots [4].
2This represents the approximate voter population and the
number of issues before Congress per year, assuming 2 issues
per bill.



(a) optimal defense (b) civic duty defense (c) auction-based defense

Figure 1: Examples of type distribution f(✓), decoy distribution  (✓), and desirability to buyer h(✓) for (a) an
optimal defense, (b) a civic duty defense with max type requesting a decoy xC = 0.5 and 10% decoy ballots, (c)
an auction-based defense with max type assigned a decoy xA = 0.5 and 50% decoy ballots. Here f = Beta(1, 2).

similar themes can be easily imagined for economies of AIs [12],
where it is desired to elicit and fairly aggregate multiple
opinions, but would not be scalable to request input from
every agent all the time.

Our Contributions
We provide a formal model of vote buying, including a char-
acterization of the vote buyer’s behavior and an optimal pol-
icy for distributing decoy ballots by the Election Authority
(EA). In addition, we model two societal processes by which
decoys could be distributed—these approaches freeing the
EA of any concern that it could be seen to be biasing the
outcome of an election when distributing decoys in any way
other than reflecting a random sample of the population. In
simulation, we show that the EA can make e↵ective use of
decoy ballots to maintain election integrity (e.g., reducing
the probability that the buyer changes the outcome to less
than 1%). For the optimal defense, we are able to achieve
this by adding a small number of decoys that are propor-
tional in quantity to the number of ballots the buyer can
a↵ord to buy. Interestingly, a “civic duty defense” that allo-
cates decoys to a random subset of those who request one is
almost as e↵ective as the optimal defense in which the EA
optimizes the distribution of voter types that receive decoys.

Related Work
There are numerous studies on vote buying, for example [8,
15,16,19]. These include game-theoretic models of vote buy-
ing, but none that consider the role of decoy ballots. In
Dekel et al. [6], the game is played by the candidates them-
selves buying votes, Groseclose and Snyder [10] study vote
buying in legislative bodies and analyze the optimal coali-
tion size. Vicente [18] studies the incumbency advantage
in a vote buying game. Within AI, the problem studied
here related to studies of control (manipulation of the elec-
tion structure, including changing the candidate slate) and
bribery (voters are paid by an interested party to vote a
certain way) as studied in computational social choice [2,7].
In particular, the lobbying problem considers an election
with a binary outcome on a number of issues, and the vote
buyer has a total budget that can be expended across all
issues [1,3,5]. Ours is a special case with a single issue, but
whereas previous research has focused on using computa-
tional complexity as a barrier against bribery and control,
we adopt a game-theoretic model and study the power of
decoy ballots. There is also a conceptual connection with
work on security games [17], where the approach is to use
game theory to design optimal strategies to prevent losses

from terrorist attacks.

2. THE MODEL
We assume that there is a large population of possible vot-

ers, and that this is a binary choice election with possible
votes YES and NO. For expositional simplicity, we assume
that all voters who receive a real ballot will place a vote.
Similarly, we assume that every voter for whom it is prof-
itable to sell a ballot (decoy or otherwise) will try to sell the
ballot.3

The voters. Each voter i has an immutable, publicly-
observable voter type, ✓

i

, which indicates the probability
that a random voter with this type will vote YES. We can
think about ✓

i

as the prior that a voter will vote YES be-
fore she has carefully considered the merits of an issue. Voter
types are drawn IID from a voter type distribution with prob-
ability density f , assumed to have full support on [0, 1]. We
assume without loss of generality that E

f

[✓] < 1/2, i.e.,
that the outcome of the election without any interference by
a buyer and with enough real ballots is NO.

The buyer. We model a single, budget-limited buyer.
Given our assumption that E

f

[✓] < 1/2, we consider the in-
teresting case of a YES-buyer, meaning that the buyer wants
the election outcome to be YES. To keep things simple, we
assume the buyer can find the voters with ballots, and will
o↵er the same price p > 0 to some subset of these voters.
The buyer has a budget B, representing the number of bal-
lots that he can a↵ord to purchase at price p, and has no
utility for unspent budget. The buyer selects a random sub-
set of voters if more respond to the o↵er than he can a↵ord.

Conditioned on whether a voter’s intent is to vote NO or
YES, and whether they have a real or decoy ballot, all voters
have the same utility function in regard to whether or not to
sell. In particular, simple analysis yields that this ordering
of the minimum price that a voter will require in order to
agree to sell a ballot is real-NO > real-YES > decoy-YES >

decoy-NO. For example, any price that is acceptable to a
“real-YES” voter (real ballot, intent to vote YES) is also
acceptable to “decoy-YES” and “decoy-NO” voters. Ballots
from decoy-NO voters are the cheapest to buy.4

3It is simple to generalize the model so that the people who
actually cast ballots are sampled uniformly from those who
receive ballots, and similarly for those who try to sell ballots.
4To understand this ordering, consider that a voter with a
real ballot has a cost for selling, representing the possibility
of being caught. In addition, voters that intend to vote
NO prefer not to change their vote and vote YES. Thus,
these are the most expensive votes to buy. Analogously,



(a) optimal defense (b) civic duty defense (c) auction-based defense

Figure 2: Comparing the power of di↵erent defenses, with f = Beta(2, 4), 1000 ballots in total (some real,
some decoy), and di↵erent buyer budgets B. (a) Optimal defense, varying the fraction of real ballots. (b)
Civic duty defense, with the EA optimizing the number of decoy ballots to use for each value of parameter xC

(the ‘max type requesting decoy’). (c) Auction-based defense, with the EA optimizing the number of decoy
ballots to use for each value of parameter xA (the ‘max type assigned a decoy’).

Based on this, the real-NO votes—and the only ones the
buyer is interested in—are the most expensive ballots to buy.
Because of this, we assume the buyer will set price p high
enough for a real-NO voter to agree to sell if approached.
This could be set based on market research, for example.

The game form. The voters who receive a real ballot are
a random subset of the population, and thus with types that
follow f . The choice of how to distribute decoy ballots is, in
general, a design decision of the EA. Let  denote the den-
sity function for this decoy ballot distribution. Modeled as
a sequential-move game, we view the election as proceeding
in the three stages:

(1) the EA distributes some number of real and decoy
ballots, with the number and type distribution of real ballots
assumed fixed, but the number of decoy ballots, and perhaps
type distribution  a design decision.

(2) the buyer learns who has received a ballot (possibly a
decoy) and chooses to o↵er price p to some subset of voters
who have (real or decoy) ballots. The voters who receive an
o↵er decide whether or not to sell. The buyer breaks ties at
random if multiple voters agree to sell.

(3) Both real and decoy ballots are cast, and the real bal-
lots are tallied to determine the outcome. The buyer makes
payments to voters who agreed to sell and provide a proof
that they vote YES5.

We assume that f and the type of each voter is common
knowledge. Our analysis will focus on the subgame perfect
equilibrium of this game. Throughout, the voters have a
simple equilibrium behavior—agree to sell if o↵ered price p

(which will, in equilibrium, be high enough to be accept-
able.)

Proof of decoy. We assume the existence of a proof-
of-decoy, which lets a voter with a decoy prove to anyone
that she has a decoy. On the other hand, there is no way to
prove the authenticity of a real ballot. This property is easy
to support through standard cryptographic primitives; see,
for example, Chaum [4].6

decoy-YES ballots are more expensive to buy than decoy-
NO ballots because a voter who would vote NO (if she had
a real ballot) has higher value for depleting the budget of a
YES-buyer than a voter who would vote YES.
5Voters could provide proof of the way that they voted to
the buyer by, for example, sending a video of themselves
casting the vote or a photograph of their ballot.
6The asymmetry in proof-of-decoy but no proof-of-

EA and Buyer objectives. We take as the objective of
the EA that of maintaining election integrity, and thus min-
imizing the probability that the buyer changes the election
outcome. In contrast, the interests of the buyer are diamet-
rically opposed, and he wants to maximize the probability
that the outcome of the election is changed.

3. BUYER ANALYSIS
Given the buyer’s objective, the best response of the buyer

to the EA is to maximize the expected number of real-NO
ballots that he buys, given his budget B and knowledge
about voters’ types (probability of voting YES). Let I ✓
[0, 1] denote the subset of voter types from which the buyer
buys; in particular, the buyer will buy every ballot held
(real or decoy) by voters of these types. Let n

r

denote the
number of real ballots and n

d

the number of decoy ballots.
The buyer wants to select the subset I to solve:

max
I

Z

I

n

r

n

r

+ n

d

(1� ✓)f(✓)d✓ s.t.

Z

I
n

r

f(✓) + n

d

 (✓)d✓  B.

In this way, the buyer maximizes a quantity that is propor-
tional to the expected number of real-NO ballots purchased,
subject to the total budget. Let h(✓) denote the probability
that a ballot is real-NO given type ✓. By Bayes’ rule, and
recalling that the buyer has knowledge of f and  , this is

h(✓)
def
= P (real ^NO|✓) = n

r

(1� ✓)f(✓)
n

r

f(✓) + n

d

 (✓)
. (1)

Given a set I ✓ [0, 1], let h(I) denote the set {h(✓)} for
✓ 2 I. Let h(I1) < h(I2) mean that every value in I1 is
strictly less than every value in I2.

Lemma 1 (Buyer Optimality). The optimal buyer
strategy in the subgame perfect equilibrium is to buy in order
of decreasing h(✓) until the budget is exhausted.

Where proofs are omitted, this is because of space. They
will be provided in the long version of the paper. We assume

authenticity is important in preventing a buyer from using
coercion to buy only real ballots, while at the same time
allowing a voter with a decoy ballot to sell with impunity
to accusations of acting against the social good (since she
can, if challenged to do so, prove that it is decoy, and thus
that she is acting in good faith.) A voter will never choose
to reveal that she holds a decoy to a buyer, since doing so
would just cause the buyer to refuse to transact with her.



w.l.o.g. that if a YES-buyer has to choose between buying
two subsets of [0, 1] for which h(✓) is equal, he will buy

the subset with lower ✓. Let M
def
=
R
I f(✓)d✓ denote the

fraction of real ballots that the buyer buys. By ‘election
bought’, we refer to the event that the buyer buys enough
real ballots to change the outcome (with n

r

real ballots);
by ‘correct outcome is NO’, we refer to the event that the
election outcome is NO (with n

r

+ n

d

real ballots).

Lemma 2. The probability that the buyer changes the out-
come in the subgame perfect equilibrium is given by

P (buyer changes outcome)

= P ([election bought] ^ [correct outcome is NO]) ⇡

P

 
n

r

(1� 2M� 2(1�M)µ
Y

)

2
p

n

r

(1�M)µ
Y

(1� µ

Y

)
< Z<

(1� 2µ)
p
n

r

+ n

d

2
p

µ(1� µ)

!
, (2)

where Z ⇠ N (0, 1), µ

def
= E

f

[✓], and µ

Y

def
=

1
1�M

R
[0,1]\I ✓f(✓)d✓.

This allows us to compute the probability the buyer changes
the election outcome, which is determined by the fraction of
real ballots that he is able to buy given a defense.

4. OPTIMAL DECOY DISTRIBUTION
In this section, we assume that the EA can design defense

distribution  , and study the equilibrium of the vote-buying
game where the EA chooses an optimal defense given that
the buyer will best respond.

Definition 1 (Canonical Defense). Defense  is
canonical if there is some x, 0  x  1, s.t. h(✓) =
min(1� x, 1� ✓).

See Figure 1(a) for an illustration of a canonical defense,
and Figure 3 for an illustration of the model. Let supp(g)
denote the support of distribution g. Define the following
two properties for  :

(P1) h(✓) has the same value for all ✓ 2 supp( ).

(P2) min
✓2supp( ) h(✓) � max

✓/2supp( ) h(✓)

Lemma 3. Any defense  satisfying both P1 and P2 is
canonical.

Lemma 4. If the buyer buys all ballots in supp( ), then
there is a canonical defense  0 with the same value.

Lemma 3 characterizes canonical defenses in terms of the
properties defined above. Lemma 4 shows that if the buyer
can buy up all decoys, then how they are distributed no
longer matters. Fixing the number of real ballots n

r

, the
EA’s remaining choices are about n

d

and  . We now state
our main characterization result.

Theorem 1. For a given n

r

, n
d

, and buyer budget B, the
optimal strategy of the EA in the subgame perfect equilibrium
is canonical.

Proof. Assume for contradiction, that there is a non-
canonical  that is better than any canonical defense. Let
k be an index, and consider a sequence of defenses { 

k

} =

{ 0, 1, ...}, where  def
=  0. We will show that we can define

a finite sequence that obtains a canonical defense at least as

Figure 3: Real ballots, distributed according to f(✓),
and decoy ballots, distributed according to  (✓), are
given to voters by the EA. In an optimal defense, de-
coys are assigned with higher propensity to the voter
types that are a priori more attractive to the buyer,
thus forcing the buyer to also deplete his budget on
decoys.

Figure 4: Comparing the power of various defenses
for f = Beta(2, 4), xC and xA = 0.5, and 1000 total
ballots.

good as  . Let h
k

(✓) denote the function h that corresponds
to  

k

.
Let I

k

✓ [0, 1] denote the set of intervals that are best for
the buyer given  

k

(solving for the buyer’s objective subject
to his budget). If the buyer buys all ballots in supp( 

k

),
then by Lemma 4, we can modify  

k

to form a canonical
 

k+1 with the same value, and we are done.
Suppose otherwise, and that in addition  

k

does not sat-
isfy P1 and P2. That is, we have:

(P0) the buyer does not buy all ballots in supp( 
k

), and
one or both of

(¬ P1) h

k

(✓) takes on multiple values for ✓ 2 supp( 
k

)

(¬ P2) min
✓2supp( k) hk

(✓) < max
✓/2supp( k) hk

(✓).

By P0, we can construct some interval S
k

✓ supp( 
k

) (the
source set), where the buyer is not buying all ballots, and an
interval T

k

✓ I
k

(the target set), such that h
k

(S
k

) < h

k

(T
k

)



(and thus, S

k

\ T

k

= ?). Let R

k

= supp \ I
k

be the
remaining subset of supp( ) that the buyer is not buying.
We must have argmin

✓2supp( k)
h

k

(✓) ✓ R

k

. The existence
of T

k

follows from ¬P1 because 9✓ 2 I
k

for which h

k

(✓) >
min

✓2supp( k) hk

(✓) (the existence is guaranteed by values of
✓ 2 supp( 

k

) that are greater than the minimum), and thus
we have max

✓2Ik h

k

(✓) > min
✓2supp( k) hk

(✓). If ¬P2, then
by buyer optimality (Lemma 1), argmin

✓2supp( k)
h

k

(✓) ✓
R

k

. In both cases, argmin
✓2supp( k)

h

k

(✓) ✓ S

k

.
We pick ✏

S

, ✏

T

> 0 to define a move of a uniform slice of
 density from S

k

to T

k

such that,

(i)
R
✓2Sk

max(0, 
k

(✓) � ✏

S

) d✓ =
R
✓2Tk

✏

T

d✓ [mass con-

servation]

(ii) h

k+1(Sk

) < h

k+1(Tk

) [target set still preferred by buyer
to source set]

By continuity (except possibly on a set of measure 0) of
h(✓), such an ✏

S

, ✏

T

pair that satisfies (ii) exists. We ar-
gue that S

k

\ I
k+1 = ?. Before the  mass is moved,

we have minh
k

(I
k

) � h

k

(T
k

) > h

k

(S
k

). After the move,
we have minh

k+1(Ik+1) � h

k+1(Tk

) > h

k+1(Sk

). The in-
equality is because the buyer can always exhaust his bud-
get by buying I

k

. Thus, we know that the buyer does not
buy anything in S

k

after the  mass has been moved. Let

Q

k

def
=
R
Ik

(1 � ✓)f(✓)d✓. Thus, we have Q

k+1  Q

k

be-

cause the only set on which h

k+1(✓) > h

k

(✓) is S

k

. In ad-
dition, min

✓2supp( k) hk

(✓) < min
✓2supp( k+1) hk+1(✓). Be-

cause 8k 2 Z+, ✓ 2 [0, 1], h
k

(✓) � 0 the sequence must be
finite.

Theorem 1 says that for a given n

r

and n

d

, the optimal
design of  by the EA is canonical. The next result shows
that  (and its support, which is [0, xO], “o” for optimal) can
be easily computed given any n

r

and n

d

.

Theorem 2. For any given n

r

and n

d

, the optimal de-
fense of the EA in the subgame perfect equilibrium is given
by a decoy ballot distribution with density function

 (✓) =

(
nr
nd

(xO�✓)f(✓)
1�xO

for ✓ 2 [0, xO]

0 for ✓ 2 (xO, 1]
, (3)

where the threshold xO is determined by the following equa-
tion: 1

1�xO

R
xO

0
F (✓)d✓ = nd

nr
and F (✓) is the CDF of f .

With this expression, we can determine the power of in-
creasing the number of decoys, n

d

, for any voter type distri-
bution f , buyer budget B, and number of real ballots n

r

.

5. NEUTRAL APPROACHES
In this section, we consider defenses where the EA does

not design  , since doing so may be argued as the EA playing
too active a role in running the election. Beyond neutrality,
these new approaches have the additional advantage of not
relying on the EA having knowledge of f .

5.1 A Constrained Defense
We first consider a constrained defense:

Definition 2. Defense  is constrained if the EA dis-
tributes decoy ballots uniformly at random, i.e.,  = f .

Having a constrained defense implies that h(✓) = nr
nr+nd

(1�
✓) and I = [0, ⌧

C

] for some ⌧
C

> 0, such that the budget is
spent, i.e., F (⌧

C

) = B/(n
r

+ n

d

).

Definition 3 (Low Budget). A low budget is a bud-
get where

R 1

⌧C
✓f(✓)d✓ <

1
2 � F (⌧

C

).

Definition 4 (High Budget). A high budget is a bud-
get where

R 1

⌧C
✓f(✓)d✓ >

1
2 � F (⌧

C

).

In words, for a buyer with a low (high) budget, the ex-
pected number of real ballots the buyer buys is lower than
(exceeds) the amount needed to change the election out-
come.

One way to study the power of a constrained defense is
to consider the following question: if the total number of
ballots is fixed, what is the optimal mix of real and decoy
ballots?

Theorem 3. Fixing the total number of ballots, the best
constrained defense for the EA in the subgame perfect equi-
librium is all (one) real ballots for low (high) buyer budget
under the Normal approximation (2).

With a low buyer budget, while a constrained defense
makes the buyer buy some decoys, it also leaves unpurchased
decoys and reduces the number of unpurchased real ballots,
decreasing the accuracy of the result. Thus, decoys are not
useful for the EA in this case. On the other hand, the best
that the EA can do with a buyer with a high budget is to
issue a single real ballot, with the hope that the buyer won’t
buy it, resulting in a high variance outcome based on the
vote of a single voter. Decoys are used, but not to good
e↵ect.

5.2 Civic Duty Defense
In this model, the EA makes decoy ballots available to a

random subset of those voters who make an explicit request
for a decoy.7 The decision of the EA is thus the number of
decoy ballots, but not how to distribute them. Rather, this
decision arises through a simple model of a societal process.

In modeling this process, we assume that, for a YES-
buyer, there is some distribution of civic-mindedness ⇡(✓),
with support on [0, xC], that determines the probability that
a voter will request a decoy, where xC is a fixed, publicly
known quantity (“c” for civic). In particular, we assume for
simplicity that ⇡(✓) / xC � ✓. This captures the idea that
the more extreme an agent’s type, the more likely the agent
is to request a decoy and thus help preserve the election’s
integrity.

Via Bayes’ rule, the e↵ect on the distribution on types
 of those who get decoys is  (✓) = P (✓|request decoy) /
P (request decoy|✓)f(✓) = ⇡(✓) · f(✓) = (xC � ✓)f(✓).

In fact, there will sometimes be a choice of n
d

such that
the civic duty defense is optimal. If the EA can choose a
number of decoys n

d

such that nd(1�xC)
nr

= k, where k is the
normalization constant, then we see the canonical structure,
with h(✓) = 1�xC, 8✓ 2 [0, xC]. We call the defense obtained
via this model a civic duty defense. An example of this
defense is illustrated in Figure 1(b).
7For the purpose of both this model and the next, we assume
it is prohibitively costly for a buyer to acquire multiple, cred-
ible real-world identities in order to attack these distribution
mechanisms.



(a) constrained defense (b) optimal defense

(c) auction-based defense (d) civic duty defense

Figure 5: Using decoys to thwart vote buying, for di↵erent buyer budgets (the number of ballots the buyer can
buy). The number of real ballots is 750, the voter type distribution is f = Beta(2,4). (a) constrained defense,
in which decoy ballots are distributed according to f(✓); (b) optimal defense; (c) auction-based defense with
xA = 0.5; (d) is civic duty defense with xC = 0.5.

5.3 Auction-Based Defense
In this variation, the EA makes decoy ballots available to

voters via an auction. We assume a simple n

d

+1st price
auction (when selling n

d

decoy ballots), with the EA choos-
ing n

d

. The intent is not to model a sophisticated auction,
but to adopt a strategyproof mechanism as a model for an
idealized market-based approach for distributing decoy bal-
lots to voters. The e↵ect is that decoys go to voters with
the highest value for decoys. As with the civic duty defense,
the EA who makes use of an auction-based defense chooses
the number of decoy ballots but not how to distribute them.

In modeling this societal process, we assume that the value
to a voter for a decoy is monotonically increasing as the
voter’s type ✓ gets closer to zero.8 For this reason, we model
the e↵ect of the auction as being that there is some threshold
xA 2 (0, 1), whereby the decoys are distributed according to
voter type distribution f , conditioned on ✓  xA (“A” for
auction). In particular, for ✓ 2 [0, xA], we have  (✓) / f(✓).

6. SIMULATION RESULTS
We describe the results of an extensive simulation study

to compare power of various defenses in preventing a buyer
succeeding in changing the outcome of an election. We
choose to present results for voter type distribution f =
Beta(2, 4), but the analysis is qualitatively unchanged for
other distributions, including those with mean voting types
in [0.01,0.49] (e.g., voter type distribution Beta(9,11), which
is quite concentrated around the mean of 0.45).

8We insist, though, that the reasonable property holds that
a voter’s value for using a decoy is less than her value for
a real ballot, and thus this auction-based societal process
is consistent with our analysis in Section 2 in regard to the
ordering of minimum acceptable o↵er price from a buyer
across di↵erent kinds of voters.

Figure 5 fixes the number of real ballots, and shows that
vote buying can be successfully thwarted by issuing su�-
ciently many decoy ballots. The optimal and civic duty de-
fenses are most e↵ective, but even issuing decoys according
to the auction-based and constrained defenses substantially
reduces the probability of a vote buyer’s success. It is inter-
esting that even a small number of decoys, relative to the
number of real ballots, can be e↵ective.

It also helps with understanding to compare the power of
di↵erent defenses when fixing the total number of ballots,
some of which will be real and some decoys, and varying
the number of decoy ballots. Figure 2(a) shows the e↵ect of
varying the fraction of real ballots when using an optimal
defense. Figure 2(b) shows that the e↵ect of the civic duty
defense for di↵erent values of model parameter xC (the ‘max
type requesting a decoy’), and with the EA optimizing the
number of decoys for each value of xC. Figure 2(c) shows
the e↵ect of the auction-based defense for di↵erent values of
model parameter xA (the ‘max type winning a decoy’), also
with the EA optimizing the number of decoys for each value
of xA. The auction-based defense is the least e↵ective, but
even here there is a range of xA for which the performance is
better than without using any decoys. In Figures 2(b) and
2(c), a maximum type of 0 receiving a decoy corresponds
to zero decoys. Also fixing the total number of ballots, we
examine the relative power of the di↵erent defenses as a
function of the buyer budget. In Figure 4 (with 1000 total
ballots) we see that an optimal defense can use decoys to
protect against buyers with around twice the budget of a
‘no defense’ approach that just uses all real ballots. For the
civic-duty and auction-based defenses, we fix xC = xA = 0.5
and pick the best n

d

at each point in the graph. The auction-
based defense is better than no defense or the constrained
defense. The civic-duty defense has very good performance
that is almost the same as that of the optimal defense for



many buyer budgets.

7. CONCLUSION
We have presented the first game-theoretic study of the

power of decoy ballots in thwarting vote buyers. We have de-
rived a characterization of the form of an optimal defense,
and compared its power to those of neutral defenses that
could be enabled through leveraging simple societal pro-
cesses to distribute decoy ballots. Our results are positive:
decoy ballots are e↵ective in thwarting the power of a vote
buyer. Amongst the neutral defenses, the civic duty defense,
where decoys are given at random to a subset of those who
request such a ballot, seems especially interesting for future
study. Also of interest is to study defenses under the re-
quirement that they must protect equally against a YES-
or NO-buyer, when there are more than two ballot choices,
multiple buyers, simultaneous polls, and participants with
value and cost heterogeneity.
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ABSTRACT
Judgment aggregation studies situations where groups of
agents take a collective decision over a number of logically
interconnected issues. A recent stream of papers is dedi-
cated to modelling frameworks of social choice theory, in-
cluding judgment aggregation, within logical calculi usually
designed ad hoc for this purpose. In contrast, we propose the
use of dynamic logic of propositional assignments (DL-PA),
an instance of propositional dynamic logic based on atomic
programs modifying propositional evaluations. We provide
logical equivalents in DL-PA for the most known aggregation
procedures from the literature, for axiomatic properties, and
for properties of the constraints, thus showing the versatility
of this language for dealing with judgment aggregation.

CCS Concepts
•Computing methodologies ! Multi-agent systems;

Keywords
Social Choice Theory; Dynamic logic; Modal logic; Compu-
tational Social Choice; Automated Reasoning

1. INTRODUCTION
Social choice theory gathers a number of mathematical

models for the study of collective decisions, such as voting
and elections, or the allocation of resources among a group
of agents. Judgment aggregation is one such model, in which
individuals express binary judgments over a set of intercon-
nected issues, which are then aggregated into a collective
choice by means of an aggregation rule. This model can
be traced back to work by legal scholars [22] and it is now
an established framework in artificial intelligence to study
complex collective decisions [12, 18].

In judgment aggregation, the correlation among the issues
is typically modelled by making use of simple propositional
languages. This explicit link with logic inspired researchers
to look for a full logical formalisation of the setting, devel-
oping logical formalisms that are able to express and reason
about aggregation rules and their properties. These e↵orts
are part of a fertile research agenda connecting logic with

Appears at: 4th Workshop on Exploring Beyond the Worst Case in
Computational Social Choice (EXPLORE 2017). Held as part of the Work-
shops at the 16th International Conference on Autonomous Agents and
Multiagent Systems. May 8th-9th, 2017. Sao Paulo, Brazil.

social choice theory (see, e.g., Endriss, [11]). To cite some
examples, Arrow’s Theorem [2], one of the cornerstones of
social choice theory, has been formalised into higher-order
logics [33, 27], first-order logic [17] and modal logic [7]. The
ultimate goal of this program is to use automated reason-
ing techniques to discover new results, an objective that has
been partially reached by combining the use of SAT solvers
with mathematical lemmas, in preference aggregation [31],
ranking sets of objects [15], and in classical social choice
theory [5, 6].

Two full-fledged formalisation of judgment aggregation
and preference aggregation made use of modal logic: namely,
Judgment Aggregation Logic — of which both Hilbert-style
[1] and natural deduction [29] axiomatisations have been
provided — and the Logic for Social Choice Functions pro-
posed by Troquard et al. [32]. In both cases, the authors
develop their own modal languages to formalise judgment
aggregation, making the application of automated reason-
ing techniques less immediate. In this paper, instead, we
propose to use the existing language of Dynamic Logic of
Propositional Assignments DL-PA [10, 3]. This logic is an
instance of Propositional Dynamic Logic PDL (see, e.g., [4]),
where atomic programs consist of assignments of truth val-
ues to propositional variables. DL-PA is also grounded on
propositional logic: in other words, there exists a procedure
to translate every modal formula in DL-PA as a propositional
formula [10, 3], showing a direct connection with automated
reasoning via the use of SAT solvers. Moreover, numerous
knowledge representation problems have been expressed in
DL-PA, such as belief change operations [19] and abstract
argumentation problems [9], and it is arguably a natural
choice for the setting of judgment aggregation, where indi-
vidual opinions are represented as binary evaluations.

We translate most aggregation rules proposed in the lit-
erature on judgment aggregation as DL-PA programs, en-
suring that the size of each program remains polynomial in
the number of agents and issues. Consider for instance the
classical majority rule, which collectively accepts a given is-
sue if the number of agents accepting it is greater than the
number of agents rejecting it. A straightforward translation
of this rule would make use of the explicit description of all
possible majorities (i.e., coalitions of more than half of the
agents), which would take exponential space. The formali-
sation in DL-PA we propose solves this problem by a clever
use of counters.

Aggregation rules are typically classified and justified by
means of axiomatic properties, which are then used in the
literature to obtain limitative results on the boundaries of



aggregation — the notorious impossibility theorems. We
provide DL-PA formulas for the most used aggregation ax-
ioms, which can then be interpreted on the translation of a
rule. As an aside, we obtain an interesting distinction be-
tween axioms that bound the result of the aggregation on
one profile, for which we find a translation into propositional
logic, and those that require reasoning about multiple pro-
files, for which DL-PA needs to be used to obtain a compact
representation. The final part of the paper focuses on the
problem of guaranteeing a safe aggregation, i.e., identifying
those types of logical dependencies among the issues such
that aggregating individual judgments yields a result consis-
tent with them. In our framework, this problem boils down
to checking the validity of a corresponding DL-PA formula.

The paper is organized as follows. In Section 2 we provide
the basic definitions of judgment aggregation and of the DL-
PA language, as well as setting the stage for a translation of
the former into the latter. In Section 3 we propose DL-PA
programs to compute the most known judgment aggregation
procedures. Section 4 provides translations for the axiomatic
properties of aggregation functions, and Section 5 focuses
on characterising formulas for safe aggregation. Section 6
concludes the paper and points at a number of directions
for future work. We omit most of the proofs in the interest
of space: full proofs of the main results can be found in
Novaro’s Master Thesis [28].

2. PRELIMINARIES
In this section we introduce the formal framework of both

binary aggregation with integrity constraints and star-free
Dynamic Logic of Propositional Assignments. Moreover, we
provide our first contribution by showing how to translate
aggregation problems into the logic of our choice.

2.1 Binary Aggregation with Integrity
Constraints

Two main frameworks can be considered for judgment ag-
gregation: the classic formula-based model [24], in which in-
dividuals vote directly on complex logical formulas, and bi-
nary aggregation with integrity constraints [16] where agents
have binary opinions on atomic issues linked by an integrity
constraint. In this paper we choose the latter setting, and
we present it briefly below.

Let I = {1, . . . ,m} be a finite non-empty set of issues, on
which the agents in the finite non-empty set N = {1, . . . , n},
for odd n (as we shall see, this is just a technical assump-
tion), express a binary opinion. Individual opinions form a
boolean combinatorial domain D = {0, 1}m, where “1” de-
notes acceptance and “0” rejection. A simple propositional
language L

PS

can be defined from the set of propositional
symbols PS = {p1, . . . , pm}, with one atom per issue in
I. Then, integrity constraints can be defined as formu-
las IC 2 L

PS

, to express the existence of logical inter-
dependencies among the issues. If there is none, we let IC
= >. Consider the following classical example of aggrega-
tion, known in the literature as the discursive dilemma [22]:

Example 1. Three judges have to decide whether (1) a
defendant is liable for breaching a contract, depending on
whether (2) the contract forbade a particular action and (3)
the defendant did it anyway. Let thus IC = p1 $ p2 ^ p3,
and consider the profile below:

p1 p2 p3

Judge 1 1 1 1
Judge 2 0 0 1
Judge 3 0 1 0

Majority 0 1 1

As we can see, while the three judges all respect the integrity
constraint, the majority outcome does not. Hence, it is not
clear whether the judges should give their sentence based on
the collective judgment on the conclusion (the defendant is
not liable) or the premises (the defendant did an action that
was forbidden by the contract).

A ballot B = (b1, . . . , bm) 2 D is a particular choice of
zeroes and ones for the issues. The set of all ballots satisfying
IC, written Mod(IC) = {B | B |= IC}, is called themodels of
IC. We denote by B

i

the individual ballot of agent i, and we
assume B

i

2 Mod(IC) for all i 2 N : the agents are rational.
A profile B = (B1, . . . , Bn

) collects all the individual ballots
of the agents, such that b

ij

indicates the j-th element of
ballot B

i

in B. The set NB
j:1 = {i 2 N | b

ij

= 1} is the
coalition of supporters of issue j in B.

An aggregation procedure (aggregation rule, aggregator)
is a function F mapping a rational profile to a (possibly
irrational) non-empty set of ballots.

Definition 1. Given a set of agents N , a set of issues I
and an integrity constraint IC, an aggregation procedure is
a function F : Mod(IC)N ! 2D \ ;, for 2D the powerset of
D. A rule is called resolute if its outcome is a singleton for
every profile, and irresolute otherwise. We denote by F (B)

j

the outcome of a resolute aggregator on issue j.

The Hamming distance measures how much two ballots
disagree on the issues, and is defined asH(B,B⇤) = |{j 2 I |
b
j

6= b⇤
j

}|. For example, if B1 = (1, 0, 0) and B2 = (1, 1, 1),
we have H(B1, B2) = 2, since they only di↵er on the last
two issues.

2.2 Dynamic Logic of Propositional
Assignments

To describe problems in judgment aggregation we choose
the language of Dynamic Logic of Propositional Assignments
DL-PA [10, 3], an instance of Propositional Dynamic Logic
PDL, where atomic programs assign truth value true or false
to propositional variables. This logic has already been used
to model multi-agent scenarios, such as interactions of agents
in normative systems [20] and social simulations [14]. More
precisely, we focus on the star-free version of DL-PA, without
unbounded iteration — which can be obtained from DL-PA
via the elimination of the Kleene star [3].

The language of star-free DL-PA is given by the following
Backus-Naur grammar:

' ::= p | > | ? | ¬' | ' _ ' | h⇡i'
⇡ ::= +p | �p | ⇡ ;⇡ | ⇡ [ ⇡ | '?

where p ranges over P = {p, q, . . . }, a countable set of propo-
sitional variables.

Atomic formulas consist of variables and constants > and
?. Complex formulas are built via negation ¬, disjunction
_, and a diamond modality for each program h⇡i. Other
Boolean connectives (e.g., conjunction ^, implication!, bi-
conditional $, exclusive disjunction �) and the dual oper-
ator [⇡]' are defined in the usual way. Atomic programs



+p and �p assign truth value true or false to variable p, re-
spectively. Sequential composition ⇡ ;⇡0 executes first ⇡ and
then ⇡0, nondeterministic union ⇡ [ ⇡0 nondeterministically
chooses to execute either ⇡ or ⇡0, and test '? checks that '
holds.

A valuation v is a subset of P that specifies the truth
value of every propositional variable, so that V = 2P =
{v1, v2, . . . } is the set of all valuations. When p 2 v, we say
that p is true in v (and we say that p is false in v otherwise).
As illustrated in Table 1, DL-PA programs are interpreted
through a unique relation between valuations

kpk = {v 2 V | p 2 v}
k>k = 2P

k?k = ;
k¬'k = 2P\ k'k

k' _  k = k'k [ k k
kh⇡i'k = {v 2 V | 9v1 s.t. (v, v1) 2k⇡k and v1 2k'k}
k+pk = {(v1, v2) | v2 = v1 [ {p}}
k�pk = {(v1, v2) | v2 = v1 \ {p}}
k⇡ ;⇡0 k = k⇡k � k⇡0 k
k⇡ [ ⇡0 k = k⇡k [ k⇡0 k
k'?k = {(v, v) | v 2k'k}

Table 1: Interpretation of DL-PA expressions

Abbreviations have been introduced in the literature to
make programs more readable [3, 4, 19]. As a convention,
abbreviations for formulas will start with an uppercase let-
ter, while those for programs and counters will start with a
lowercase letter. We thus have skip := >?, if ' then ⇡1 else
⇡2 := ('? ;⇡1) [ (¬'? ;⇡2), p  q := if q then + p else � p
and if ' do ⇡ := if ' then ⇡ else skip, as well as repeated ex-
ecution of program ⇡ for n times, or up to n times (where
both programs execute flip for n = 0):

⇡n := ⇡ ;⇡n�1

⇡n := (skip [ ⇡) ;⇡n�1

We can write any number s 2 N0 in DL-PA via its bi-
nary expression, thanks to a conjunction of t = blog sc + 1
variables [3]. If x is the binary expression of s, we use
a conjunction of q

i

and ¬q
i

propositional variables, with
i 2 {0, . . . , blog sc}, such that a non-negated variable means
that the corresponding binary digit in x is a 1, while a
negated variable indicates a 0. For instance, if s = 11, we
have that x = 1011 and the corresponding formula in DL-PA
is 11 := q3 ^ ¬q2 ^ q1 ^ q0.
The following two programs increment or set to zero (i.e.,

assign truth value false to all the variables in P ) a given
counter [3]. Let xt := {qx

i

| 0  i < t} be a set of variables:

incr(xt) := ¬
� ^

0it�1

qx
i

�
? ;

[

0kt�1

�
(¬qx

k

^
^

0ik�1

qx
i

)? ;

+ qx
k

; ;
0ik�1

�qx
i

�

zero(P ) := ;
p2P

�p

We can compare two numbers and check whether one of
them is greater than the other, they are equal, or one of
them is greater or equal to the other, via the following DL-
PA formulas. The general idea is to compare the digits at the

same position in the binary expressions of the two numbers.1

x > y :=
_

0k<t

�� ^

k<i<t

(qx
i

$ qy
i

)
�
^ qx

k

^ ¬qy
k

�

x = y :=
^

0k<t

qx
k

$ qy
k

x � y := x > y _ x = y

As a convention, we let
V

k<i<t

(qx
i

$ qy
i

) = > for k = t� 1.
Additionally, we may want to flip the truth value of some

variables in a set P . The first program below flips the truth
value of a single, nondeterministically chosen, variable in P .
The second resets the truth value of all variables in P to
some new value: as a result, either their truth value has
been flipped or not. Both programs execute skip for P = ;.

flip1(P ) :=
[

p2P

(p ¬p)

flip�0(P ) := ;
p2P

(+p [ �p)

The next two formulas hold when di↵erent types of min-
imisation are achieved. The first is true if and only if ¬'
holds whenever we do not change the truth value of some
variable in the non-empty set P . The second holds if and
only if we found the minimal Hamming distance s between
the states of before and after flipping the variables in P ,
such that ' holds afterwards:

D(', P ) := ¬h
[

p2P

flip�0(P \ {p})i'

H(', P,�s) :=

⇢
> if s = 0
¬hflip1(P )s�1i' if s > 0

Observe that D(', P ) does not imply that ' will hold if we
flip the truth value of all the variables in P . In our setting
this definition su�ces, but such alternative formulation has
been given as well [19].

2.3 Translating Aggregation Problems into
DL-PA

We here show how to translate profiles and aggregation
rules into DL-PA. The former is turned into a specific type
of valuation, while the latter become programs. We also
show how to check rationality in DL-PA and how to turn an
arbitrary valuation into one corresponding to a profile.

As a first step, let B := {p
ij

| i, j 2 N} be the subset of
P whose variables encode the opinion of any agent i on any
issue j. Analogously, O := {p

j

| j 2 N} is the subset of P
whose variables refer to the possible output for any issue j.
From these two infinite sets, we derive two finite subsets for
specific n agents and m issues. Namely, Bn,m := {p

ij

| i 2
N and j 2 I} is the set of propositional variables referring
to the decision of the agents in N on the issues in I, and
1Suppose two numbers can be expressed with a di↵erent
amount of binary digits. In this case, if in some program
we need to use many counters, we take the maximal value
a counter could take as the upper bound for all counters in
that program. Hence, if t is the maximal number of vari-
ables needed to express the maximal value a counter can
take, and some other number is expressible by using only
k variables (where k < t), it will nonetheless be expressed
with t variables by imposing ¬q

i

for all k < i  t. We thus
write x instead of xt.



the variables in Om := {p
j

| j 2 I} refer to the collective
decision on the issues in I. Finally, U := {q

i

| i 2 N} is
the subset of P whose variables are used for finitely many
counters in our programs.

The following definition carves out the valuations that cor-
respond to a profile in judgment aggregation.

Definition 2. We say that valuation vB translates pro-
file B = (B1, . . . , Bn

) on m issues, in case:

(i) vB ✓ Bn,m, and

(ii) p
ij

2 vB () b
ij

= 1.

The first condition ensures that only variables correspond-
ing to the decision of the agents on the issues could possibly
be true in vB . This means, in particular, that counters are
initially set to zero. According to the second condition, a
variable in vB is true if and only if the corresponding entry
in profile B has value 1. For example, if we have profile
B = ((0, 1), (0, 0), (1, 0)) for 3 agents and 2 issues, the set
B3,2 = {p11, p12, p21, p22, p31, p32} corresponds to the entries
in the profile, the set O2 = {p1, p2} handles the outcome
of aggregation rules and valuation vB = {p12, p31} ✓ B3,2

encodes the values of the profile.
We now introduce the definition for translating aggrega-

tion rules as DL-PA programs.

Definition 3. A program f(Bn,m) translates aggregation
rule F , if for all profiles B and valuations vB translating B
according to Definition 2, it is the case that:

• F is resolute and (vB , v0) 2k f(Bn,m) k, implies that
for all j 2 I and p

j

2 Om:

p
j

2 v0 () F (B)
j

= 1.

• F is irresolute and V f
vB

= {v0 | (vB , v0) 2k f(Bn,m)k},
implies that there is a bijection g : F (B) ! V f

vB
such

that if g(B) = v0 then for all j 2 I and p
j

2 Om:

p
j

2 v0 () b
j

= 1.

We write the integrity constraint as a formula IC over
variables in Om. In order to check whether a particular
choice of truth values over Bn,m corresponds to a profile, i.e.,
all the individual ballots satisfy the constraint, we check if
the following formula holds.

RationalIC(Bn,m) :=
^

i2N

[ ;
j2I

p
j

 p
ij

]IC

Namely, we check whether by copying into the outcome vari-
ables the truth values of the variables for each individual
ballot, the constraint IC holds.

The following program leads from an arbitrary valuation
to one that possibly corresponds to the encoding of a profile,
by creating the “right” initial conditions:

profIC(B
n,m,Om) := zero(Om) ;RationalIC(Bn,m)?

Observe that after its execution all the outcome variables
are false, but it is not enough to conclude that condition
(i) of Definition 2 holds. Nonetheless, all programs encod-
ing aggregation rules will just need to inspect variables in
Bn,m and (possibly) change the truth values of variables in
Om, and they will initialise at zero all counters as the first

step. Therefore, we consider the valuation reached after the
execution of profIC(B

n,m,Om) as encoding a profile as well.
To conclude this section, we highlight an important re-

mark. Since aggregation rules are defined over a specific
number of issues, number of agents and integrity constraint,
the programs we provide as their DL-PA translation are to
be intended as general program schemas: a set of issues I,
set of agents N and constraint IC need to be given to com-
pletely spell them out.

3. AGGREGATION RULES
Aggregation rules are the basic bricks of judgment aggre-

gation, allowing to reach a group decision from individual
choices. In this section we translate known aggregation rules
as DL-PA programs, omitting the proof of correctness of our
translations for space constraints.

3.1 Expressibility of Aggregation Rules
We begin by proving a general result that shows how any

judgment aggregation rule, as introduced in Definition 1,
can be expressed as a DL-PA program.

Theorem 1. All aggregation rules F : Mod(IC)N ! 2D \
; for some N , I and IC are expressible as DL-PA programs.

Proof. We first deal with the case of a resolute aggrega-
tion rule F . Consider the DL-PA program consisting of a se-
quential composition of sub-programs of the form if 'B do
⇡
F (B) for each profile B, where 'B = (

V
j2I

V
i2NB

j:1
p
ij

) ^
(
V

j2I
V

i2(N\NB
j:1)

¬p
ij

), i.e., 'B completely identifies pro-

file B, and ⇡
F (B) = ;{j2I|F (B)j=1} +p

j

; ;{j2I|F (B)j=0}�pj ,
i.e., ⇡

F (B) modifies the outcome variables according to the
result of F on profile B.

For irresolute F it su�cies to consider a sequential com-
position of sub-programs of the form if 'B do

S
B2F (B) ⇡B

,
where ⇡

B

is defined as ⇡
B

= ;{j2I|bj=1} +p
j

; ;{j2I|bj=0}�pj ,
generating a non-deterministic program whose output con-
sists of all outcomes of F . These two types of programs
clearly translate resolute and irresolute aggregation rules.

While on the one hand the result above shows that DL-
PA is fully expressive when it comes to translating judgment
aggregation rules, on the other hand the formulas used in the
proof are all of size exponential in the number of individuals
and issues. More precisely, since all profiles are explicitly
given in the specification of the programs, the size is in the
order of 2|I| ⇥ |N |. In the remainder of this section we
thus present compact programs for a selection of well-known
judgment aggregation rules.

3.2 Simple Aggregation Rules
We call the following rules simple because they are all

resolute, they are easy to explain and understand, and they
can also be found in real-world examples.

3.2.1 Dictatorship of Agent i

The dictatorial rule is perhaps the simplest and at the
same time less attractive aggregation rule. For all profilesB,
the outcome of the dictatorship of some fixed agent i 2 N is
her individual ballot. Namely, Dictatorship

i

(B)
j

= 1 ()
b
ij

= 1 for all j 2 I. Its translation in DL-PA can easily be
obtained as the following program:



Proposition 1. Let I and N be given. Then, program
dict

i

(Bn,m) := ;
j2I(pj  p

ij

) translates rule Dictatorship
i

.

3.2.2 Quota Rules

The majority rule is an instance of the more general class
of quota rules [8]. A quota rule specifies for each issue a
certain threshold of support that has to be reached in order
for the issue to be accepted in the outcome. The quota q
can be any integer such that 0  q  n + 1, where n is
the number of agents. In case all the issues have the same
quota, we speak of uniform quota rules. If q

j

is the quota
for issue j 2 I and ~q = (q1, . . . , qm), we have:

Quota
~q

(B)
j

= 1 () |NB
j:1| � q

j

.

We now state a result that provides, for every choice of
quotas q

j

, a DL-PA program translating the corresponding
quota rule (by using a counter quota

j

for each issue j).

Proposition 2. For I a set of issues, N a set of agents,
and 0  q1, . . . , qm  |N |+ 1, the Quota

~q

rule is translated
in the following DL-PA program:

quota
~q

(Bn,m) := ;
j2I

zero(quota
j

) ; ;
j2I

incr(quota
j

)qj ;

;
j2I

�
zero(supp) ;( ;

i2N
if p

ij

do incr(supp)) ;

if supp � quota
j

do + p
j

�
.

We refer to the specific program for the majority rule as
maj. Moreover, for the uniform quota rule with q = 1,
called the nomination rule, an even more compact program
is nom(Bn,m) := ;

j2I(if
W

i2N p
ij

do + p
j

).

3.3 Maximisation and Minimisation Rules
In this section we focus on two aggregation rules that are

based on maximisation or minimisation processes and aim
at amending the outcome of the majority rule, in case it
does not satisfy the integrity constraint. The first one is
the maximal subagenda rule, while the second one is the
minimal number of atomic changes rule [23].

3.3.1 Maximal Subagenda Rule

The maximal subagenda rule returns ballots satisfying the
integrity constraint and having maximal agreement (with
respect to set inclusion) with the majority outcome:

MSAIC(B) =
✓

argmax
B|=IC

{j 2 I | b
j

= Maj(B)
j

}.

Before presenting a DL-PA program translating this rule,
we need some further notation. Consider the following pro-
grams, which all execute skip if P = ;:

store(P ) := ;
p2P

p0  p

restore1(P ) :=
[

p2P

(p� p0? ; p p0)

restore�0(P ) := ;
p2P

(skip [ p p0)

Program store stores the truth value of the variables in
P in some fresh variables p0, program restore1(P ) restores
the truth value of just one variable p0 in the corresponding
variable in P , and program restore�0(P ) restores the truth

value of none, some, or all variables p0 in the corresponding
variables in P .

We can now present the following program, inspired by
analogous work in the literature on belief change [19]. Given
that the MSAIC is an irresolute rule we might need to handle
multiple outcomes for the same profile: whence its (omitted)
proof di↵ers from that of Proposition 1.

Proposition 3. Let I be a set of issues, N a set of
agents and IC a propositional formula. The MSAIC rule
is translated in the following DL-PA program:

msaIC(Bn,m) :=maj(Bn,m) ; store(Om) ; flip�0(Om) ; IC? ;

[restore1(Om) ; restore�0(Om)]¬IC?.

3.3.2 Minimal Number of Atomic Changes Rule

The minimal number of atomic changes rule returns the
following outcome set:

MNACIC(B) = {B | Maj(B⇤) = B,B |= IC and for all B0

X

i2N

H(B
i

, B⇤
i

) 
X

i2N

H(B
i

, B0
i

)}.

Recall that the Hamming distance H(B,B0) between two
ballots is the number of issues on which they di↵er (cf. Sec-
tion 2.1). This rule thus looks for profiles which are mini-
mally di↵erent from the current one, such that the majority
rule applied to them would return an outcome consistent
with the constraint.

Proposition 4. Let I be a set of issues, N a set of
agents and IC a propositional formula. The MNACIC rule
is translated in the following DL-PA program:

mnacIC(Bn,m) :=
[

0dm·n

�
H(hprofIC(Bn,m,Om) ;maj(Bn,m)iIC,

Bn,m,�d)? ; flip1(Bn,m)d
�
;

profIC(B
n,m,Om) ;maj(Bn,m) ; IC?.

The program mnacIC finds the minimal number d of vari-
ables in the set Bn,m whose truth values can be modified
such that applying program maj to this new profile leads to
a valuation where the outcome satisfies the constraint.

3.4 Preference Aggregation Rules
This section presents rules inspired by the literature on

preference aggregation, and that have been formalised in
judgment aggregation in a number of papers. The first is
the Kemeny rule [21]. Then, we present the Slater rule, also
known as the maxcard subagenda rule [23]. A program sim-
ilar to the ones presented below can be designed to formalise
the ranked pairs rule as well (see [28]).

3.4.1 Kemeny Rule

The outcome of the Kemeny rule consists of those ballots
that satisfy the constraint and that minimise the sum of the
Hamming distance to the individual ballots in the profile.

KemenyIC(B) = argmin
B|=IC

X

i2N

H(B,B
i

).



Let us first introduce the following program and formula:

sH(Om,Bn,m) := zero(dis) ; ;
i2N

�
;

j2I
if p

j

� p
ij

do

incr(dis)
�
,

MD(Om,Bn,m, IC) := [sH(Om,Bn,m) ; store(dis) ; flip�0(Om) ;

sH(Om,Bn,m)](dis’ > dis! ¬IC).

Program sH computes the sum of the Hamming distances
between the outcome and the profile. Formula MD is true if
and only if whenever some outcome is closer to the profile
than the current one, with respect to the Hamming distance,
then IC is not satisfied.

Proposition 5. Let I be a set of issues, N a set of
agents and IC a propositional formula. The KemenyIC rule
is translated in the following DL-PA program:

kemIC(Bn,m) :=
[

0dm

�
hflip1(Om)di(MD(Om,Bn,m, IC)^

IC)? ; flip1(Om)d
�
;MD(Om,Bn,m, IC) ^ IC?.

The program kemIC finds the right d such that by flipping
the truth value of d outcome variables we get to a valuation
that satisfies the constraint, and such that d is the minimal
Hamming distance to the rest of the profile.

3.4.2 Slater Rule

The outcome of the Slater rule consists of those ballots
satisfying the constraint and minimising the Hamming dis-
tance from the outcome of the majority rule for that profile.

SlaterIC(B) = argmin
B|=IC

H(B,Maj(B)).

Proposition 6. Let I be a set of issues, N a set of
agents and IC a propositional formula. The SlaterIC rule
is translated in the following DL-PA program:

slaterIC(Bn,m) :=maj(Bn,m) ;
[

0dm

�
H(IC,Om,�d)? ;

flip1(Om)d
�
; IC?.

The program slaterIC first computes the majority rule, and
then it finds the minimal distance d such that by flipping the
truth value of d variables in the outcome we reach a valua-
tion where the constraint is satisfied. In case the majority
outcome already satisfies IC, we have that d = 0.

4. AXIOMS
Aggregation rules can be characterised according to which

general properties they satisfy. These properties are called
axioms in the literature [8]. In line with similar work in
preference aggregation, where properties are sometimes dis-
tinguished into intra-profile and inter-profile conditions [30],
we here make a distinction between single-profile and multi-
profile axioms. The former type relates the structure of a
profile with the outcome of an aggregation rule applied on
that profile. The latter type links the structure of two pro-
files with the outcomes of the same aggregation rule applied
on them.

4.1 Single-profile Axioms
We present four classical single-profile axioms, for which

we provide a translation in propositional logic. The full DL-
PA machinery is thus not necessary in this case.

A rule F is unanimous if in case all agents agree on some
issue j, the outcome of F for issue j agrees with them.

U : For all B, for all j 2 I and for x 2 {0, 1}, if b
ij

= x for
all i 2 N then F (B)

j

= x.

A rule is neutral with respect to the issues if, when two
issues are treated in the same way in the input, they are
treated in the same way in the output.

NI : For any two j, k 2 I and any B, if for all i 2 N
b
ij

= b
ik

then F (B)
j

= F (B)
k

.

A rule is neutral with respect to the domain if, whenever
two issues are treated in an opposite way in the input, their
output should be opposite.

ND : For all B and any j, k 2 I, if for all i 2 N b
ij

= 1�b
ik

then F (B)
j

= 1� F (B)
k

.

A rule is neutral-monotonic if the acceptance of an issue
j in a given profile implies the acceptance of any other issue
k which is accepted by a strict superset of individuals:

MN : For all B and any j, k 2 I, if b
ij

= 1 implies b
ik

= 1
for all i 2 N , and there is s 2 N such that b

sj

= 0 and
b
sk

= 1, then F (B)
j

= 1 implies F (B)
k

= 1.

We are now ready to present the following result:

Theorem 2. Let Bn,m be the set of variables for agents
in N and issues in I, let F be an aggregation rule for n and
m, and let f be its DL-PA translation. Moreover, let:

U :=
V

j2I
�
((
V

i2N p
ij

)! p
j

) ^ ((
V

i2N ¬p
ij

)! ¬p
j

)
�
.

NI :=
V

j2I
V

k2I
�
(
V

i2N (p
ij

$ p
ik

))! (p
j

$ p
k

)
�
.

ND :=
V

j2I
V

k2I
�
(
V

i2N (p
ij

$ ¬p
ik

))! (p
j

$ ¬p
k

)
�
.

MN :=
V

j2I
V

k2I
�
(
V

i2N (p
ij

! p
ik

)^
W

s2N (¬p
sj

^p
sk

))!
(p

j

! p
k

)
�
.

Then, the following equivalences hold:

(i) U holds () |= [profIC(B
n,m,Om) ; f(Bn,m)]U.

(ii) NI holds () |= [profIC(B
n,m,Om) ; f(Bn,m)]NI .

(iii) ND holds () |= [profIC(B
n,m,Om) ; f(Bn,m)]ND.

(iv) MN holds () |= [profIC(B
n,m,Om) ; f(Bn,m)]MN.

4.2 Multi-profile Axioms
We now present three multi-profile axioms, which we trans-

late as DL-PA formulas. In fact, to check whether an aggre-
gation rules satisfies them, we need to compare the outcomes
of the rule on di↵erent profiles. Dealing with multiple pro-
files means referring to more than one valuation, and apply-
ing the program expressing rule F more than once.

A rule is independent if, whenever an issue j is treated in
the same way in two profiles, the outcome of the rule for j
is identical in both of them. Formally:



I : For any j 2 I and profiles B and B0, if b
ij

= b0
ij

for all
i 2 N , then F (B)

j

= F (B0)
j

.

A rule F is independent-monotonic if, whenever we con-
sider two profiles such that the second one di↵ers from the
first in that some agent i first rejected issue j and then
she accepts it, if j was accepted in the first outcome then
it should still be accepted in the second. Let (B�i

, B0
i

) =
(B1, . . . , B

0
i

, . . . , B
n

) for some profile B:

MI : For any issue j 2 I, agent i 2 N , profiles B =
(B1, . . . , Bn

) and B0 = (B�i

, B0
i

), if b
ij

= 0 and b0
ij

=
1 then F (B)

j

= 1 implies F (B0)
j

= 1.

An anonymous rule treats each agent in the same way.
That is, by permuting the order of the individual ballots in
the input, the output for all the issues does not change.

A : For all B and any permutation � : N ! N ,
F (B1, . . . , Bn

) = F (B
�(1), . . . , B�(n)).

We can now state the following result:

Theorem 3. Let Bn,m be the set of variables for agents
in N and issues in I, let F be an aggregation rule for n
and m, and let f be its DL-PA translation. Moreover, for
Bn

j

:= {p
ij

| i 2 N} let:

I :=
V

j2I
�
(p

j

! [flip�0(Bn,m \ Bn

j

) ; profIC(Bn,m,Om) ;

f(Bn,m)]p
j

) ^ (¬p
j

! [flip�0(Bn,m \ Bn

j

) ;

profIC(Bn,m,Om) ; f(Bn,m)]¬p
j

)
�

MI :=
V

j2I
�
p
j

!
V

i2N [+p
ij

; profIC(Bn,m,Om) ; f(Bn,m)]p
j

�

A := [store(Om) ;
�S

i,k2N ;
j2I

�
if p

ij

� p
kj

do (flip1({p
ij

}) ;
flip1({p

kj

}))
��

n�1
; zero(Om) ; f(Bn,m)]

V
j2I(pj $ p0

j

)

Then, the following is the case:

(i) I holds () |= [profIC(B
n,m,Om) ; f(Bn,m)]I.

(ii) MI holds () |= [profIC(B
n,m,Om) ; f(Bn,m)]MI.

(iii) A holds () |= [profIC(B
n,m,Om) ; f(Bn,m)]A.

5. AGENDA SAFETY
A recurring problem in judgment aggregation is that the

outcome of a rule might not respect the given logical de-
pendencies among the issues, even though each agent sat-
isfies the integrity constraint in her individual ballot. As a
way out, it can be investigated whether we can ensure that
the outcome of certain groups of aggregation rules will al-
ways satisfy a given constraint, provided that the constraint
relates the issues to one another in a specific way. This
approach was first studied in formula-based judgment ag-
gregation under the name of the safety of the agenda [13].

5.1 Prime Implicants and Safety
In this preliminary section we make use of the area of

logic studying prime implicants to redefine known concepts
of the agenda safety problem. Given a set of axioms AX, we
call the set FIC[AX] := {F | F satisfies all axioms in AX
and the domain of F is Mod(IC)N for some N} a class of
aggregation procedures. The idea of safety for constraints is
then defined as follows.

Definition 4. An integrity constraint IC is safe for the
class FIC[AX] if and only if for all F 2 FIC[AX], we have

F (B) |= IC for all inputs B 2 Mod(IC)N for some N .

Let a literal be either a variable p or its negation ¬p. A
term D is a conjunction of distinct literals and D�D0 is the
subtraction operation over terms, resulting in all the literals
of D that are not in D0. A term D is an implicant of ' if
and only if D |= '. We follow the presentation of Marchi et
al. [25], and give the following definition:

Definition 5. D is a prime implicant of ' if and only if

(i) D is an implicant of ';

(ii) for all literals L in D, (D � {L}) 6|= '.

Observe that any constraint IC can be rewritten as a con-
junction of negations of prime implicants of ¬IC [26]: in
the following we assume that constraints have this syntacti-
cal form. The following definitions reinterpret for integrity
constraints some known agenda properties of formula based
judgment aggregation, by making use of the concept of prime
implicants. Let P

'

be the set of variables used in '.

Definition 6. A constraint IC has the k-median prop-
erty (kMP) if and only if any prime implicant D of ¬IC is
such that |P

D

|  k.
A constraint IC has the simplified median property (SMP)

if and only if any prime implicant D of ¬IC is such that
|P

D

| = 2 and for p, q 2 P
D

we have that ¬L
p

^ ¬L
q

is also
a prime implicant of ¬IC.

For k = 2 we speak of the median-property (MP). Observe
that if IC = > we do not have any prime implicant of ¬IC,
which means that the issues are all independent from one
another — a condition known as syntactic simplified median
property (SSMP) in the literature.

5.2 Safety in DL-PA
We start by proving a lemma which characterises by a

DL-PA formula the valuations where some prime implicant
of formula ' is true. Let thus ' be a formula and let P ✓ P

'

be a subset of the variables of '. Given a valuation v, let
P
v

:=
V

1k|P | Lk

be the term such that for all p
k

2 P :

L
k

:=

⇢
p
k

if v |= p
k

¬p
k

otherwise

Lemma 1. Let v be a valuation, ' a formula and P ✓ P
'

a subset of the variables in '. Term P
v

is a prime implicant
of ' if and only if v |= PI(P,'), where

PI(P,') := [flip1(P )]hflip�0(P
'

\ P )i¬' ^ [flip�0(P
'

\ P )]'.

Proof. For the left-to-right direction, let P
v

be a prime
implicant of ' and suppose, for reductio, that v |= ¬PI(P,').
Observe that, if hflip1(P )i[flip�0(P

'

\ P )]' is the case, we
would have a contradiction with condition (ii) of Definition 5
(P

v

is not prime). In fact, we would have that some variable
p
k

2 P
v

corresponding to a literal L
k

in P
v

would make (D�
{L

k

}) |= ' hold. On the other hand, if hflip�0(P
'

\P )i¬' is
the case, we would have a contradiction with condition (i)
of Definition 5 (P

v

is not an implicant of '). In fact, there
would be some valuation v0 where the literals in P

v

are true
and yet ¬' holds. Therefore, we have v |= PI(P,').



We prove the right-to-left direction by contraposition. Sup-
pose P

v

is not a prime implicant of '. By Definition 5 this
means that either P

v

is not an implicant of ', which would
imply that v 6|= [flip�0(P

'

\ P )]', or that P
v

is not prime,
which would imply that v 6|= [flip1(P )]hflip�0(P

'

\ P )i¬'.
Thus, in both cases we can conclude that v 6|= PI(P,').

Proposition 7. Constraint IC has the kMP if and only
if |= ¬IC!

W
P✓PIC
|P |k

PI(P,¬IC).

Proof. For the left-to-right direction, assume that IC
has the kMP and suppose, for reductio, that there is some
v such that v |= ¬IC and v |=

V
P✓PIC
|P |k

¬PI(P,¬IC). Since

v 6|= IC and IC can be written as a conjunction of negations
of prime implicants of ¬IC, we know that there must be
some prime implicant D of ¬IC such that v |= D and that
|P

D

|  k. By Lemma 1 we thus get that v |= PI(P
D

,¬IC),
which contradicts v |=

V
P✓PIC
|P |k

¬PI(P,¬IC).

We prove the right-to-left direction by contraposition. Sup-
pose IC does not have the kMP: hence, there is some prime
implicantD of ¬IC such that |P

D

| � k+1. We now provide a
valuation v such that v |= ¬IC and v 6|=

W
P✓PIC
|P |k

PI(P,¬IC).

Consider valuation v such that v |= D and for all other
prime implicants D0 of ¬IC, we have v 6|= D0 (such a valu-
ation always exists). Since v |= D, we get by Definition 5
that v |= ¬IC. Suppose there was some other term D0 such
that v |= PI(P

D

0 ,¬IC), |D0|  k and v |= D0: by Lemma 1
this would imply that D0 is a prime implicant of ¬IC, con-
tradicting our choice of valuation.

Proposition 8. Constraint IC has the SMP if and only
if |= ¬IC!

W
pi,pk2PIC

�
PI({p

i

, p
k

},¬IC) ^ [flip(p
i

); flip(p
k

)]

PI({p
i

, p
k

},¬IC)
�
.

Proof. For the left-to-right direction, assume that IC
has the SMP and consider an arbitrary valuation v such
that v |= ¬IC. Suppose, for reductio, that the consequent
does not hold. Hence, either there is no prime implicant of
¬IC of size 2 or there is one, but the negation of its literals
is not a prime implicant of ¬IC. In both cases, this would
contradict our assumption that IC has the SMP.

For the right-to-left direction, assume that IC has not the
SMP. This means that either it has not the MP, or it has
the MP but there is a prime implicant of ¬IC such that its
negated literals are not also a prime implicant of ¬IC. In
the first case, we would get by Proposition 7 that there is a
valuation v such that v 6|= PI({p

i

, p
k

},¬IC) thus making the
consequent false. In the second case, we would have that v 6|=
[flip(p

i

); flip(p
k

)]PI({p
i

, p
k

},¬IC), thus falsifying the conse-
quent again. Therefore, 6|=

W
pi,pk2PIC

�
PI({p

i

, p
k

},¬IC)^
[flip(p

i

); flip(p
k

)]PI({p
i

, p
k

},¬IC)
�
.

6. CONCLUSIONS AND FUTURE WORK
In this paper we showed how to translate the framework

of judgment aggregation, in its model of binary aggregation
with integrity constraints, into the propositional dynamic
logic DL-PA. The key ideas of our translation consisted in
turning profiles of individual ballots into a specific type of
valuation, and aggregation rules into DL-PA programs mod-
ifying the truth value of a set of variables for the outcome.
We then provided compact representations for a number of

aggregation rules from the literature. Next, we focused on
the axiomatic characterisation of aggregation rules as well
as the safety of the agenda problem in DL-PA.

Our work paves the way to further investigations from
both a computational and an agent-based perspective. First
of all, a significant characteristics of DL-PA is that this
modal logic is grounded on propositional logic. In other
words, this means that there exists a procedure to trans-
late any DL-PA formula as a formula of propositional logic
[10, 3]. Therefore, thanks to the work presented here we
now have a chain of translations from aggregation problems
to DL-PA, and from DL-PA to propositional logic — which
yields us the tool of SAT solvers to enhance research in judg-
ment aggregation. As we anticipated in the introduction,
this computer-based approach has already been proven suc-
cessful in Computational Social Choice [31, 15, 5].

In the second place, our translation allows us to also model
the winner determination problem for aggregation rules [13,
23]: i.e., computing the outcome of a rule on a given pro-
file. The formulation of this problem di↵ers between reso-
lute and irresolute aggregators. As an example, for a reso-
lute aggregation rule F the problem is usually formulated as
checking for each issue j whether F (B)

j

= 1 for profile B.
This would hence translate into DL-PA as checking whether
vB |= [f(Bn,m)]p

j

is the case. Following our previous consid-
eration, it would then be possible to translate instances of
such formula into propositional logic.

As far as the questions related to agent-based reasoning
are concerned, we propose a possible generalisation and a
direction for future research. It is easily seen that our frame-
work could be generalised to deal with a setting where agents
are allowed to abstain on the issues. Specifically, it would
be su�cient to consider an additional set of propositional
variables for the profile, to keep track of the issues on which
the agents abstain. This would hence result in two copies of
the profile to fully cover the information about abstentions
and individual opinions.

Finally, it would be interesting to provide a DL-PA treat-
ment of strategy-proofness for aggregation rules. Given that
we have a way to store the values of propositional variables,
to compute the Hamming distance and to use counters, in-
corporating this kind of study in our setting would be fairly
straightforward — of course, in case we assume Hamming
distance type of preferences over possible outcomes for the
agents. We thus leave these questions for future investiga-
tion.
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ABSTRACT
Recently there has been interest in iterative voting,
where voters are able to update their votes based on
voting information from previous rounds. In this paper
we conduct a series of empirical studies in order to un-
derstand the strategic issues which arise when agents,
voting to approve a set of k candidates, can base their
voting or approval decisions on information from their
neighbours in a social network. We illustrate that the
k-approval voting rule often results in cyclic voting be-
haviour, that social network structure matters in terms
of strategization, and that homophily in the network
decreases strategization for the k-approval voting rule.

Keywords
Social choice, Social simulation, Emergent behaviour, Strate-
gic Voting, Iterative Voting, Approval Voting, Homophily

1. INTRODUCTION
Major elections in recent years have seen uncommonly

high levels of divisiveness across the electorate. This ten-
dency to associate with only those considered similar to one-
self is called homophily and can cause individuals to be sur-
rounded primarily by others with similar opinions, leading
all groups to be convinced that they have the majority of
support. A possible cause for the recent levels of homophily
exhibited in the world is social networks such as Facebook
or Twitter [5].

The recent rapid growth in prevalence of real-world social
networks makes them excellent sources of information for
understanding e↵ects such as homophily. Social networks as
a general tool are used to model human interactions by rep-
resenting personal information about existence and strength
of relationships, and the distance between two people while
also allowing insight into societal trends.

An active area of research studies how social networks af-
fect elections by modeling networks of voters with the con-
nections between voters representing the relationships the
voters have. The political opinions of a voter’s neighbours
can have an impact on the voter’s decisions throughout the
election, also referred to as the ”strategy” of the voter.

Appears at: 4th Workshop on Exploring Beyond the Worst Case in
Computational Social Choice (EXPLORE 2017). Held as part of the Work-
shops at the 16th International Conference on Autonomous Agents and
Multiagent Systems. May 8th-9th, 2017. Sao Paulo, Brazil.

Strategic voting occurs when a voter submits a ballot that
is not entirely honest. In plurality voting systems this most
often manifests as voting for a candidate that you prefer
over the candidate you believe is going to win even though
neither of those is your most preferred candidate.

In addition to plurality there are voting systems such as
approval voting. In approval voting, the voters may approve
of as many candidates as they wish; in some cases strate-
gization might involve approving the 2 or 3 most preferred
candidates. Approval voting has many advantages over plu-
rality voting and other voting rules. It allows a voter to
safely vote for their favourite candidate while also allowing
strategization. Approval voting has been used in a variety
of situations including papal elections for over 300 years and
by the American Mathematical Society. Many voting rules
are quite complex while approval voting is praised for its
simplicity [15]. In this paper we focus on k-approval voting,
in which voters must approve of exactly k candidates.

This paper studies the intersection of homophily, social
networks, strategic voting, and approval voting. Through
simulations we explore the e↵ect that homophily has on a
variety of di↵erently structured social networks in which the
voters employ strategic k-approval voting. Our findings sug-
gest that homophily leads to a much lower social welfare,
having a larger number of candidates leads to a better out-
come, and that strategization increases with the number of
candidates.

2. RELATED WORK
This work builds upon work done by Tsang and Larson

[16] which uses a similar model and focuses on the plurality
scoring rule, which is equivalent to 1 � approval. It was
shown that under the plurality rule strategization leads to
an improvement in social welfare over the truthful outcome,
and that the presence of homophily decreased the occurrence
of strategization. Overall, similar results are shown in this
paper.

The model used in this paper has been inspired by pre-
vious work, particularly that of Chopra et al.[3] which in-
troduces a knowledge graph containing voters and an edge
(i,j) when voter i is able to observe the current preference
of voter j. The di↵erence is that Chopra et al. are focused
purely on the strategic behaviour of each voter rather than
the behaviour of the entire system.

The model of voter decision-making is based on the work
done in [10]. The authors study voting equilibria which oc-
cur when all voters in a population cause an outcome they
have no incentive to switch away from. It is shown that ap-



proval voting in a three candidate election leads to a winner
located in the median of the voter positions. Certainly, in
our model when voters must approve 2 of the 3 candidates
one of their honest approvals will be for the median candi-
date, making that candidate almost certainly the winner.

Clough studies Duverger’s Law using a model of iterative
voting very similar to ours in [4]. In her model voters are
on a grid network, which is neither small-world or scale-
free, and use information from their neighbours in order to
participate in iterative plurality voting. The focus in her
work is on Duverger’s Law which is primarily of interest
under plurality voting rules and not studied here though
her results do suggest there may be less strategization when
voters have less information which is not seen in our results.
The primary di↵erences between her work and our own are
the network structure, use of plurality voting, and a response
function that considers only ties rather than ties and near
ties.

Several papers show that iterative voting does not neces-
sarily converge under most common voting rules [9, 7, 12,
13]. In particular, approval voting is shown to have no guar-
antee of convergence. However, the models used in these pa-
pers contained voters with complete information that mod-
ified their ballots only when they believed the modification
would change the outcome of the election.

On the subject of strategic voting, much work has been
done. In particular, Smith provided results from a Bayesian
regret analysis of approximately 2.2 million simulations show-
ing approval voting to be better than most common voting
rules in the presence of strategic voters [15]. Interestingly,
his data also showed that in all common voting rules strate-
gic voting leads to more unhappiness than truthful voting
which is in contrast to the findings of our model. The di↵er-
ence between these results could be due to the presence of
iterated voting in our model and the lack thereof in Smith’s.
Slinko and White provide a study of an e↵ect observed in our
model [14]: Often, in the first round of updating, a majority
of voters will approve of a candidate that has very little hon-
est support. This is done in an attempt to remove support
for candidates that are not the voter’s favourite candidate
but nonetheless have a large amount of support. The result
is that often after a single round of updates the least popular
candidate has the most approvals. Slinko and White refer
to this as ”strategic overshooting” and provide results indi-
cating that there is often a ”safe” ballot that will be better
than an unsafe ballot.

Approval voting has been studied in several contexts, Pound-
stone performed a Bayesian regret analysis on a variety of
voting methods and concluded that unrestricted approval
voting was much simpler and led to more satisfaction than
most other voting methods [11]. Our work restricts the num-
ber of approvals voters are permitted.

3. MODEL
In this section we describe the voting problem analysed

in this paper. Let a set, V , of n voters be situated in some
social network, G = (V,E), where G is a directed graph
such that (i, j) 2 E means that voter i observes voter j, and
thus may be influenced by the voting behavior or opinions
of voter j. We define the out-neighbours of i to be the set
N (i) = {j|(i, j) 2 E}, and thus this is the set of voters who
may influence voter i.

Let C = {1, . . . ,m} be the set of candidates or alter-

natives over which the voters in V may cast votes, and
let each candidate c

j

2 C be associated with some posi-

tion p(c
j

) 2 [0, 100]. Furthermore, our voters, V , have
single-peaked preferences over the candidate set. Each voter,
i 2 V , has a preferred position p

i

, and thus its utility if some
candidate is selected with position p̂ is

u

i

(p
i

, p̂) = �|p
i

� p̂|2.

Each voter casts a ballot, b, from a set of admissible ballots
B. A social choice function, F : F 7! P(C) is used to ag-
gregate the voters’ ballots and select a subset of candidates
as winners. We are interested in situations where voting is
iterative and progresses in rounds. In round t, each voter
i simultaneously casts a ballot b

(t)
i

2 B which is chosen in

response to the previous ballot b(t�1)
j

of each out-neighbour
j 2 N (i). If all voters refrain from updating their ballots
in a given round, voting stops (and the system is considered
stable). Otherwise, voting continues until r rounds have
passed. Each round could be considered as a formal poll, or
as a more informal update of decisions by voters that hap-
pens naturally over time. After voting stops, the winning
set of candidates is decided using the voting function, F .

3.1 Ballot Formation
In this paper we are particularly interested in how voters

form their ballots as part of the iterative voting procedure
and we make the observation that voter i can base its bal-
lot decisions on the previous ballots of members of N (i).
We argue that each voter believes that their neighbours are
representative of the rest of the network, and thus if a frac-
tion f of their neighbours approve of a particular candidate
the voter assumes that the same fraction of voters in V ap-
prove that candidate and so may strategically cast a vote
accordingly.

More formally, in this paper we study the k-approval vot-
ing process in order to understand how iterative voting may
lead to strategization amongst networked agents. K-approval
voting is a member of a larger class of voting rules, scoring
rules, in which ballots are vectors representing a score given
to each candidate by that voter. A scoring rule uses a vector
of the form (↵1,↵2, ...,↵m

) where ↵
i

� ↵

i+1. The candidate
ranked first by the voter is given ↵1 points, the candidate
ranked second given ↵2 points, and so on. The candidate
with the highest aggregate score wins. In k-approval voting,
a ballot has the form {1, ..., 1| {z }

k 1’s

, 0, ..., 0}.

If s
j

is the total score for candidate c

j

in N (i) [ i then i

believes that the fraction of support in the entire network for
c

j

is
sj+1

S

where S = N (i)+m. We use Laplace smoothing to
ensure that all candidates have a non-zero chance of winning
and thus the vector s = ( s1+1

S

,

s2+1
S

, ...,

sm+1
S

) represents the
level of support for each candidate.

In order to decide upon which candidates to approve,
a voter assigns a prospect rating to each candidate x by
enumerating all possible ties between candidates x and y,
calculating the likelihood of that outcome and multiply-
ing by the utility gained if x wins. Specifically, the like-
lihood of a particular outcome from the other n � 1 voters
b = (b1, b2, ..., bm), where b

i

is the number of approvals of
candidate i, is given by:



Pr(b;n� 1; s) =
(n� 1)!

b1!b2!...bm!

Q
m

i=1(si + 1)bi

S

n�1

Let T (y, x) be the chance of a tie between x and y where
x and y are both in a winning position, referred to as a
winning tie, and e

T (x, y) be the chance of an outcome where
candidate x has one less vote than candidate y and candidate
y is winning. Then voters assign each candidate x a prospect
rating using lexicographic tie-breaking, given by:

C

x

=
mX

y=1

(1
y<x

T (y, x)(u
x

� u

y

) + 1
x<y

e
T (y, x)(u

x

� u

y

))

1
x<y

is 1 when x lexicographically precedes y and 0 oth-
erwise. (u

x

�u

y

) gives the marginal utility gain from voting
for x over voting for y. In each round voters calculate C

x

for each candidate and approve the k candidates with the
highest values. An alternative approach for ballot decision-
making is discussed in Section 7.

3.2 Network Structure and Properties
We will be interested in understanding how network struc-

ture and properties influence strategic choices of voters in
the context of k-approval iterative voting. We study two
di↵erent types of random network structure in this paper:
Erdös-Renyi (ER) and Barabási-Albert. These graph struc-
tures are used as they have one important property in com-
mon, both being small-world graphs, and di↵er in another
property, being scale-free. Further, we study these network
both with and without the presence of homophily, the ten-
dency of similar individuals to associate with one another
more often than those with di↵ering views.

Graphs are small-world if the average distance between
any two nodes in the graph grows proportionally to the log-
arithm of the number of nodes in the graph [6]. This re-
sults in nodes typically being connected to other nodes by
a very short path. Scale-free graphs have a degree distri-
bution which follows a power law, resulting in many nodes
with many edges fewer than average and many nodes with a
greater than average number of edges [6]. Many real world
networks exhibit small-world [17] and scale-free [1] proper-
ties.

Erdös-Renyi (ER) graphs are generated by a parameter,
pr, representing the probability of attachment. Any two
nodes i, j are connected by a directed edge from i to j

with some provided probability pr. ER graphs are small-
world but not scale-free. When studying ER graphs with
homophily, we multiply pr by a homophily factor

h = 1� |p
i

� p

j

|
100

in order to increase the probability of a voter being con-
nected to similar voters. Adding homophily has the e↵ect of
reducing the edge density by approximately 2

3 for the same
value of pr.

Barabási-Albert (BA) graphs use preferential attachment
to generate a larger variance in average degree. An attach-
ment parameter d is decided upon, the graph begins with
d vertices, all connected to each other with edges in both
directions. The remaining n� d vertices are added one at a
time, attaching each one to d existing vertices, selected ran-
domly with probability proportional to the degree of each

V1 V2

Figure 1: A very basic example of a social network.
V1 is influenced by V2 and V2 is also influenced by V1.

existing vertex. When an edge is added from i to j, the
edge from j to i is also added. These graphs are small-world
and scale-free. Homophily can be incorporated by multiply-
ing the probability of adding any connection by homophily
factor h. This modification has no e↵ect on the edge density
of the network.

4. CONVERGENCE OF ITERATIVE
K-APPROVAL VOTING

The first property we are interested in is whether itera-
tive k-approval voting converges, that is, whether a state is
reached where no voter wishes to update their ballot. While
it was known that in a number of situations iterative voting
was not guaranteed to converge [7], recent experiments using
plurality voting showed that non-convergence was rarely an
issue in practice [16]. Unfortunately, as we show in this sec-
tion and later support with experimental findings, iterative
k-approval voting is likely to not converge. We illustrate the
problem through a simple example.

Under k-approval, each voter must approve of exactly k

candidates and does so based upon a prospect rating as-
signed to each candidate (discussed in Section 3). Consider
the simple network shown in Figure 1 under 2-approval. Let
V1 have preferred position 93 and V2 have preferred position
24. Assume, furthermore, that there are 3 candidates A, B,
and C with positions 0, 43, 35 respectively. We can then in-
duce the following preference orderings over candidates for
each voter:

V1 : B � C � A

V2 : C � B � A

If the voters submit truthful ballots on the first iteration,
then candidates B and C are each awarded a score of 2,
and lexicographic tie-breaking results in B winning. At first
glance, this seems like a reasonable outcome - both voters
agreed on their ballots, and so one might expect that no up-
dates would occur in further iterations of the voting process.
However, that is not the case.

After observing each others’ initial ballots (due to the
structure of the network in Figure 1), each voter computes
prospect ratings, using the equations in Section 3, for each
candidate. These prospect ratings are shown in Table 1.
Voters choose the k candidates with the highest prospect
ratings so V1 will not change its ballot, however, V2 will
switch to a ballot approving A and C. Thus, in round 2,
candidates A and B have one approval, while C has two,
resulting in candidate C (V2’s preferred candidate) being
declared the winner. Prospect ratings are generated for the
candidates after this second round of voting (Table 2), and
again resulting in a change in ballots. In particular, voter
V2 would prefer to approve candidates B and C, as it did
originally, thus beginning a never-ending cycle.

While at first glance, the cyclic voting behaviour of voter
V2 may seem counter-intuitive, it does have a rational un-



A B C

V1 -257 313 -56
V2 -15 -43 58

Table 1: Prospect ratings for each candidate after
the election at time t = 0.

A B C

V1 -721 323 398
V2 -50 -13 63

Table 2: Prospect ratings for each candidate after
the election at time t = 1.

derpinning. After the first ballot, V2 observes equal support
for candidates B and C and is aware that the tie-breaking
rule favours B. Thus, by reducing support for B, and ap-
proving A and C, voter V2 is able to ensure that C is the
winning candidate. However, in the second round of voting,
there is now support for all three candidates (2 approvals for
C, one approval each for A and B. By shifting its approvals
from A and C to B and C, V2 is able to ensure that its least
preferred candidate A will certainly not be a winner since its
receives no approvals. Thus, it reverts back to its original
ballot.
If the above explanation correctly personifies the“thought

process”of V2 it reveals both an interesting emergent strength
and weakness of the model. First, V2 does correctly iden-
tify that its preferred candidate will not win, despite having
a large amount of support, and changes an approval from
a more preferred candidate to a less preferred candidate,
a much more intelligent action than could have been ex-
pected. Second, the voter does not seem to realize that
while reverting to its original ballot will accomplish the im-
mediate goal of removing A as a contender in the election, it
will also cause a return to the original situation in which B,
the most preferred candidate of V2 loses. Thus, a more ad-
vanced model might look ahead and see what e↵ect a change
in ballot might have or look to history to avoid cyclical situ-
ations. It may also be useful to consider a weaker definition
of convergence, where the system is considered stable af-
ter a candidate wins for a particular number of consecutive
rounds.

5. EXPERIMENTAL SETUP
We are particularly interested in deepening our under-

standing of the relationship between strategization and iter-
ative voting under k-approval on a social network. To this
end, we conducted a series of experiments, varying di↵erent
aspects of the underlying social network of voters and the
number of candidates.
For all experiments we set k = 2 and set the number of

iterations to be at most 20. Unless otherwise noted, we set
the number of voters to be 150, and varied m from 3 to 5.
For m = 3, our findings are the average of 200 trials, while
for m = 4 and 5 our findings are the average over 100 trials.
In the first set of experiments, we studied what happened

as we varied the underlying social-network structure. In par-
ticular, for each class of graph (ER, homophily+ER (hER),
BA, homophily+BA (hBA)) we set the parameters so that
voters had an average out-degree of approximately 12, 20,
and 28 for m = 3 and 4. We measured and report several

m Homophily? PoH M:T PoS M:O % Str

Erdös-Renyi Graph

3
No 1.234 1.518 1.476 1.809 0.203

Yes 1.169 1.493 1.438 1.806 0.177

4
No 0.992 1.083 1.074 1.168 0.385

Yes 1.259 1.609 1.370 1.737 0.407

5
No 0.950 0.954 1.053 1.056 0.397

Yes 1.073 1.225 1.194 1.350 0.384

Barabási-Albert Graph

3
No 1.213 1.488 1.460 1.784 0.193

Yes 1.144 1.511 1.393 1.811 0.145

4
No 1.008 1.137 1.085 1.222 0.377

Yes 1.195 1.530 1.298 1.651 0.378

5
No 0.942 0.966 1.041 1.067 0.398

Yes 1.036 1.190 1.166 1.326 0.379

Table 3: Summary of results for experiments
with 3-5 candidates comparing, for graphs with
and without homophily, the average Price of
Honesty, Mean:Truthful ratio, Price of Stability,
Mean:Optimal ratio, and proportion of voters en-
gaging in strategic behaviour.

ER hER BA hBA
m = 3 14.66 16.64 14.23 16.38
m = 4 11.86 15.27 12.12 15.09

Table 4: Average number of updates per agent, as
a function of social-network structure.

metrics including the prevalence of strategization and the
e↵ect of connectivity on social welfare.

A second set of experiments was run on a smaller popula-
tion of 60 voters with m = 5 candidates and k = 2. Average
voter out-degrees were varied over 4, 12, and 20. These ex-
periments begin to provide hints as to how the number of
candidates a↵ects the social welfare of the system. However,
due to the limited population size and wide variance in aver-
age degree relative to population size these simulations are
intended as only a starting point for a study on the e↵ects
of the number of available candidates.

6. RESULTS
In this section we report our findings. We are interested

in understanding the frequency with which voters update
their ballots, the amount of strategization that occurs as a
function of the underlying social network, and the degree
to which strategization is either beneficial or harmful to the
system in terms of social welfare. We initially report our
findings from experiments with m = 3 and 4 candidates, and
then provide a short discussion of our preliminary findings
with 5 candidates.

6.1 Updating of Ballots
One measure of interest is the frequency in which voters

change their votes over a certain period of time. This pro-
vides us with insight into both the level of strategization



Figure 2: Proportion of voters strategizing for each
network type.

occurring in the system, as well as the cognitive overhead
required by voters as they decide which ballots to submit
in each round. Table 4 reports the average number of bal-
lot updates for each voter over a period of 20 iterations.
We make several observations. First, the voting rarely con-
verged, as was discussed earlier in the paper, and so voters
were still best o↵ updating their ballots after 20 iterations.
Second, the number of candidates seemed to influence the
number of updates slightly. With 4 candidates, there were
consistently fewer updates across the system. Finally, while
graph structure (i.e. ER vs BA) did not seem to be a sig-
nificant influence, the presence of homophily in the network
was important. This was somewhat unexpected, as we had
thought that being surrounded by voters with similar views
should make a voter more confident in their ballot.

6.2 Degree of Strategization
A voter is considered to be voting strategically if its ballot

is anything but entirely honest. Figure 2 shows the e↵ect of
homophily on strategization. In each graph with homophily,
the fraction of voters strategizing is consistently (albeit, very
slightly in the case of m = 4) lower than the non-homophily
version of that graph.

The fraction of strategizing voters tends to decrease with
increasing degree for Erdös-Renyi graphs. In Barabási-Albert
graphs, when m = 4, that trend continues however it seems
as though when m = 3 the fraction of strategizers increases
with the degree. The reason for this is unclear but it does
represent a di↵erence from plurality voting in which strate-
gization always increased with edge density (to a plateau) [16].

Also interesting to note is that of every single strategizing

voter, exactly one of their approvals was strategic and the
other honest. This is unavoidable when m is 3 but at m =
4 agents are capable of approving their two least favourite
candidates but seemingly never consider it useful to do so.
This is consistent with the idea that approval voting should
always allows you to vote for your favourite candidate while
also voting strategically for a “lesser of two evils” of candi-
dates more likely to win than your favourite. It has been
shown that when voters are allowed to decide the number of
candidates they approve it is always useful to approve one’s
favourite candidate [15].

6.3 Benefits of Strategization
In this section we report on our findings as to how bene-

ficial strategization is for the entire system. We define the
social welfare of some candidate ĉ with position p(ĉ) being
chosen as

SW (V ) =
X

i2V

u

i

(p
i

, p(ĉ))

where p

i

is the preferred position of voter i.
We use several other metrics measured across our exper-

iments. The Price of Honesty (PoH) is defined as the ra-
tio of social welfare of the truthful outcome to that of the
strategic outcome [16, 2, 9]. Since both utility values are
negative, the larger the PoH, the more costly the truthful
outcome is, relative to the strategic outcome. We also define
the Price of Stability (PoS) to be the ratio of social welfare
of the strategic outcome to that of the optimal outcome [16].
A smaller PoS shows that strategization is more beneficial
than honesty; the lowest possible value occurs at 1 when
the strategic outcome is the optimal outcome. A PoH larger
than 1 indicates that strategic behaviour is more beneficial
to the population while a PoH less than one indicates truth-
telling is more beneficial. These, or similar, metrics have
been used in many settings for evaluating the performance
of a system [2, 8]. Both were used in the original analysis of
this model for plurality voting and seem quite appropriate
when the system has converged to a stable state.

In our experiments, however, voting rarely converged, lim-
iting the usefulness of PoS and PoH. Thus, we propose two
additional variants of these measures better suited for non-
converged systems. In place of the Price of Honesty we
study the mean social welfare (the mean strategic SW of
the winner from each round of an election) divided by the
truthful social welfare (Mean:Truthful). Price of Strategy
is replaced by the mean SW divided by the optimal SW
(Mean:Optimal), pictured in Figure 3 and Figure 4 respec-
tively. These measures provide a more accurate represen-
tation of the system, though average values of the PoS and
PoH are included in Table 3 to illustrate that they follow
the same qualitative trends as our new metrics.

Similarities can be seen between PoH and the Mean:Truthful
ratio, and the PoS and Mean:Optimal ratio suggesting that
the comparisons are valid. The generally lower values of PoH
compared to Mean:Truthful suggest that the final strategic
result is not as good as the mean strategic result, or that
over time strategies tend to become less beneficial. In gen-
eral, the opposite trend seems indicated by the comparison
of PoS and Mean:Optimal SW which suggests that the final
strategic result is closer to optimal than the mean strategic
result. This seems somewhat contradictory and warrants
closer inspection.

While we see little di↵erence when it comes to whether



Figure 3: Mean Social Welfare over Truthful Social
Welfare for each network type.

Figure 4: Mean Social Welfare over Optimal Social
Welfare for each network type.

the underlying social network was generated using ER or
BA, we do note that homophily is important. The di↵er-
ence between graphs with and without homophily can be
observed most readily when m = 4. We can see from the
Mean:Optimal ratio that without homophily voters benefit
much more from strategization than those with homophily.
We observe a similar e↵ect from the Mean:Truthful ratio:
homophily leads to a lower social welfare.

6.4 Simulations with 5 candidates
While we conducted smaller experiments for the case where

m = 5 we still report our preliminary findings as they raise
some interesting questions. Our results can be seem in Fig-
ure 5.

First, we note that the Mean:Truthful ratio is now con-
sistently below 1, indicating that the actual (strategic) out-
come is always better than the honest outcome and suggest-
ing that as the space for strategization grows it becomes
more beneficial. Evidence for this is also found by observing
that the Mean:Optimal ratio is closer to 1 than in previous
experiments.

We also noticed a considerable di↵erence in the propor-
tion of strategic voters. With 4 candidates, a lower degree
led to more strategization while with 3 and 5 candidates
degree seemed to have little e↵ect on strategization levels.
However, with 5 candidates there is significantly more strate-
gization occuring compared to the 3-candidate case; consis-
tently 35-40% of candidates strategize. Interestingly, with 4
candidates, there is a case where strategization is at approx-
imately 50%, much higher than seen here. This di↵erence
may be related to the di↵ering population sizes but is mildly
surprising as the opportunities for strategization are much
larger with a larger ballot. We also noted that there were
instances when m = 5 where a voter would not vote for any
of their top k-candidates, including one instance where as
many as 13 voters in a single round did not approve any of
their top k candidates. This observation needs to be inves-
tigated further, as it opens up a number of questions with
respect to the strategy space of voters.

6.5 Comparison with Plurality
The results found in this paper have both similarities and

di↵erences to those found under plurality voting [16]. Av-
erage PoS and PoH1 seem to be quite similar when m =
4 (plurality data is not available for m = 3) for ER and
BA graphs with a slightly higher PoS for hER and hBA
graphs. In general, homophily tends to reduce the benefit
of strategization, however k-approval seems to be a↵ected
more strongly than plurality.

Curiously, the fraction of agents voting strategically is
quite di↵erent in k-approval. In both m = 3 and m = 4,
the fraction strategizing was higher than in plurality, how-
ever (excluding BA and hBA for m = 3) the graphs follow
a di↵erent curve. In plurality, strategization goes up with
degree and here the trend is the opposite.

As the plurality simulations consistently converged within
several rounds the number of updates is quite a bit lower,
averaging 40 to 80 ballot updates per election. By con-
trast, k-approval averaged over 2000 updates per election.
This massive increase is explained by the fact that in plural-

1To simplify comparison between the results, we write PoS
and PoH rather than Mean:Optimal and Mean:Truthful for
this subsection only.



Figure 5: Several metrics showing data for 5 can-
didates over average voter out-degree of 4, 12, and
20.

ity elections converged within 6 rounds while with approval
voting the elections did not converge and were terminated
after 20 rounds. In plurality the number of agents strategiz-
ing quickly drops to zero while under approval the number
of strategizers typically remains constant or cycles between
large and small numbers in alternating rounds.

7. CONCLUSIONS
In this paper we have studied the e↵ects of homophily and

a variety of social network structures on strategic voting be-
haviour in a k-approval iterated voting system. Our model
uses a population of voters connected in a social network,
each with a preference on some issue and several candidates,
also with preferences. In each round, the voters observe the
support for each candidate amongst their neighbours and de-
termine the expected utility from a vote for each candidate,
selecting the k candidates with the top utilities.

We notice several interesting patterns emerge from our
data. As with previous work under plurality, strategization
is slightly more prevalent and much more useful for net-
works without homophily, indicating that social welfare is
increased when a voter’s associates hold a wide variety of
opinions. We also noted that as the space for strategization
increased (when the number of candidates increased) strate-
gization led to a larger utility gain, as might be expected.
Curiously, the fraction of voters strategizing tends to either
go down or remain approximately constant as the average
degree of the network changes. With plurality voting it was
observed that there seems to be a ceiling on the amount
of strategization occurring in the network, it is possible that
our experiments were simply at this ceiling much of the time.

The results of this study indicate that there is significant
room for future work in this area. A more in-depth study
of approval voting is warranted, as well many additional
voting systems are available for study. In future work, it
may be desirable to modify the model in such a way that
would make simulations more likely to converge and avoid
repetitive behaviour.

The model used in our experiments allows for two di↵erent
ways of constructing a ballot. Currently, a voter views the
ballots of all its neighbours, sums the approvals and calcu-
lates the prospects of each individual candidate and selects
the k candidates with the highest prospects. This method
was chosen due to the intuitive aspect of simply approving
of the candidates that give the highest expected utility. The
disadvantage in this method is that in considering only spe-
cific candidates information about which sets of k candidates
are most approved by the voter’s neighbours is lost. The al-
ternative method involves calculating the prospects for each
individual ballot, rather than each candidate. This would
retain some useful information however it would vastly in-
crease the computational complexity of the simulations as,
in e↵ect, there would be one candidate for each possible bal-
lot.

A metric more relevant to approval voting might be the
notion that a voter can always safely approve of their favourite
candidate and also approve of other candidates. This prop-
erty is always satisfied for m = 3 and 4, and only very occa-
sionally not met when m = 5. We hypothesize that if voters
were allowed a variable number of approvals, this property
would always be met.

Presently, the preference structure of the voters in our
model is limiting in several ways. The requirement that



voters have single-peaked preferences means there will be a
tendency to elect the candidate with the median opinion,
and in fact when k >

m

2 that candidate will always have the
most honest approvals. Removing single-peaked preferences
could be di�cult while keeping intact the preference struc-
tures we have given voters. A simple modification to the
model could give voters and candidates multi-dimensional
preferences to reflect the fact that each agent may have a
distinct opinion on several issues. This allows for slightly
more variance in preferences over candidates while leaving
the possibility for a simple utility function. Unfortunately,
this would likely not remove all bias towards electing the
median candidate but it may reduce the likelihood of such
an event.

Finally, extending this work to yet more election meth-
ods could yield interesting comparisons between the meth-
ods. Di↵erent voting methods could serve two purposes:
First, running experiments with alternative methods would,
of course, teach about the behaviour of voters under those
methods and may yield surprises as with the lack of conver-
gence with approval voters. Second, di↵erent voting meth-
ods might serve to highlight aspects of this model that could
be further refined or may not generalize well, and may give
clues as to how to construct a more accurate model.
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ABSTRACT
STV is one of the most commonly-used voting rules for group
decision-making, especially for political elections. However,
the literature is vague about which tie-breaking mechanism
should be used to eliminate alternatives. We propose the
first algorithms for computing co-winners under STV, each
of which corresponds to the winner under some tie-breaking
mechanism. This problem is known as parallel-universes-
tiebreaking (PUT)-STV, which is known to be NP-complete
to compute [9]. We conduct experiments on synthetic data
and Preflib data, and show that standard search algorithms
work much better than ILP. We also explore improvements
to the search algorithm with various features including prun-
ing, reduction, caching and sampling.

1. INTRODUCTION
Voting is one of the most practical and popular ways for

group decision-making, and is one of the major topics un-
der social choice theory. In the past decades there has been
a growing literature of computational social choice, which
studies computational aspects of social choice problems and
voting rules [4]. More recently, computational social choice,
in conjunction with algorithmic game theory, has been rec-
ognized as one of the eleven “fundamental methods and ap-
plication areas” of AI, according to The One Hundred Year
Study on Artificial Intelligence [14].

One of the earliest and the most fundamental problems in
computational social choice is the computation of winners of
well-studied voting rules. In fact, the widely-regarded first
paper in computational social choice, published by Bartholdi
et al. in 1989 [3], proved that Dodgson’s rule and the Kemeny
rule are NP-hard to compute. In addition, the Slater rule is
also NP-hard to compute [7].

For political elections, the plurality rule seems to be the
most common choice. Perhaps the second one is Single
Transferable Vote (STV), also known as instant runo↵ vot-
ing, alternative vote, or ranked choice voting. According to
wikipedia, STV is being used to elect senators in Australia,

Appears at: 4th Workshop on Exploring Beyond the Worst Case in
Computational Social Choice (EXPLORE 2017). Held as part of the Work-
shops at the 16th International Conference on Autonomous Agents and
Multiagent Systems. May 8th-9th, 2017. Sao Paulo, Brazil.

city councils in San Francisco (CA, USA) and Cambridge
(MA, USA), and has recently been approved to be used for
state and federal elections in Maine State in the USA.

A typical description of STV is the following. Suppose
there are m alternatives. In each round, we calculate the
plurality score for each remaining alternative, which is the
number of times it is ranked in the first place. The alterna-
tive with the smallest plurality score is eliminated. This has
the e↵ect of transferring the ballots in support of the elim-
inated candidate to their corresponding favorite remaining
candidate. The last-standing alternative is the winner.

However, it was not clear from the literature which alter-
native should be eliminated when two or more alternatives
are tied for the last place in a round. For example, in the
San Francisco version, “a tie between two or more candidates
shall be resolved in accordance with State law” [1]. See [2]
for a list of commonly used variants of STV.

Random elimination and fixed-order tie-breaking are two
popular tie-breaking mechanisms for STV. Random elimina-
tion, as the name suggests, means that whenever multiple al-
ternatives are tied for the last place, the one to be eliminated
is chosen uniformly at random. Fixed-order tie-breaking is
characterized by a linear order O, called the priority order,
over the alternatives. Among all alternatives that are tied
for the last place in a certain round, the one that is ranked
lowest in O is eliminated. However, random elimination may
result in poor ex-post satisfaction due to randomness. For
fixed-order tie-breaking, it is unclear how the priority order
should be determined, and the existence of such an order
itself is unfair to the alternatives who are ranked low in the
priority order. Formally, STV with fixed-order tie-breaking
violates neutrality.

A natural solution is to output all alternatives who can
be made to win under some tie-breaking mechanism. This
multi-winner version of STV is called parallel-universes-
tiebreaking (PUT)-STV [9], and the same paper proved that
computing the winners under PUT-STV is NP-complete. To
the best of our knowledge, no practical algorithm exists for
computing PUT-STV.

NP-hardness of PUT-STV may not be a critical real issue
in political elections, as the frequency of holding such elec-
tions is low, the number of alternatives is often large, and
the chance of ties may not be high. The NP-hardness be-
comes more critical in low-stakes and more frequent group
decision-making scenarios, such as a group of friends us-



ing voting to decide the restaurant for dinner using an on-
line voting website, for example Pnyx [5], robovote.org, or
opra.tech. In such cases, in addition to computing all win-
ners as soon as possible, a more practical objective is to
design anytime algorithms for PUT-STV to encourage early
discovery of winners for better user experience and timely
decision-making.

To address this problem, we model the problem of deter-
mining the set of all co-winners under di↵erent run-o↵ voting
rules as a search problem in AI. We compare standard AI
search algorithms together with various ways of improving
the performance w.r.t. the following measures of perfor-
mance.

• Time taken to discover all winners.

• Early discovery of a large portion of winners.

The first measure is important for high-stakes applications
such as political elections, because we want to make sure
that all winners are found. The second measure is impor-
tant for low-stakes applications where we are given limited
resources and must output as many winners as possible.

1.1 Our Contributions
We model the PUT-STV problem as a search problem and

propose various algorithms with di↵erent combinations of
features, including, pruning, reduction, cache, and sampling.
We employ the following techniques to improve the running
time of our search algorithms and to reduce the search space
explored:

• Pruning cuts all branches that do not lead to new
winners.

• Reduction tries to remove multiple alternatives in
each round.

• Caching stores visited states and prevents the same
states from being explored again.

• Sampling can be seen as a preprocessing step: we first
randomly sample multiple priority orders O and run
STV with fixed-order tie-breaking O to compute mul-
tiple winners to start with, before running the search
algorithm.

All algorithms are tested on three types of datasets: syn-
thetic datasets with i.i.d. rankings chosen uniformly at ran-
dom, i.i.d. single-peaked rankings, and Preflib data. Our
main discoveries are the following.

1. Standard search techniques from AI perform better
than ILP formulations (Section 5).

2. Caching helps increase performance. Unfortunately,
reductions and sampling are expensive to compute and
do not provide any benefit (Section 4).

3. For single-peaked preferences, ties are rare, and the
running time grows linearly with the size of the profile
(Section 4.3).

We also extend our algorithms to other multi-round vot-
ing rules, including Baldwin and Coombs, which use Borda
score and veto score in each round, respectively. Comput-
ing all winners under PUT-Baldwin or PUT-Coombs is NP-
hard [13].

1.2 Related Work and Discussions
There is a large literature on computational complexity of

winner determination under commonly-studied voting rules.
In particular, computing winners of the Kemeny rule has
attracted much attention from researchers in AI and theory,
see for example [8, 12] and references therein. However, STV
has been overlooked in the literature, despite its popularity.
We are not aware of previous work on practical algorithms
for PUT-STV.

In this paper we do not discuss how to choose a single
winner from the output of PUT-STV, such as the president,
when multiple alternatives are PUT-STV winners. This is
mostly up to the decision-maker’s choice. For high-stakes
applications, we believe that being able to identify potential
co-winners under STV w.r.t. di↵erent tie-breaking mecha-
nisms is important in itself, because it can detect and resolve
post-election dispute on tie-breaking mechanisms.

As discussed in the Introduction, we believe that the com-
putation of PUT-STV is important not only for political
elections, but also, perhaps more importantly, for every-
day group decision-making scenarios. In such cases anytime
algorithms are necessary, and our search algorithms natu-
rally have anytime guarantee—they can be terminated at
any time and output the winners that have been explored
so far. This is another advantage of our search algorithms
over ILP.

Our work is related to a recent work on computing winners
of commonly-studied voting rules by MapReduce [10], where
the authors proved that computing STV is P-complete. We
note that STV in [10] is with a fixed-order tie-breaking mech-
anism, while our paper focuses on PUT-STV. Our technique
can also be used to compute PUT-Ranked-Pairs, which is
NP-compete to compute [6]. See [11] for more discussions
on tie-breaking mechanisms in social choice.

2. PRELIMINARIES
An election is given by a pair E = (A,N ) where A =

{a1, . . . , am

} is a set of alternatives, and N = {1, . . . , n}
is a set of voters. Let L(A) denote the set of all possible
linear orders on A. A profile of n voters is a collection P =
(V1, . . . , Vn

) of votes where for each i  n, V

i

2 L(A). The
set of all profiles on A is denoted by P. A voting rule r is a
function r : P ! A that maps a profile to a unique winning
alternative.

A scoring function is identified by a collection of scoring
vectors M = (~s1, . . . ,~sm), where for each m̂, ~s

m̂

is a vector
of non-negative numbers so that for every pair k, k0  m̂, if
k < k

0, then ~s

m̂

(k) � ~s

m̂

(k0) holds. The scoring function
given by M is denoted by score

M

: L(A) ⇥ A ! Z�0. For
any set of alternatives A, a linear order V 2 L(A), and
any alternative c ranked at position k by V , score

M

(V, c) =
~s|A|(k).

We can view the scoring functions as being defined by
an m ⇥ m matrix, where the rows m̂  m correspond to
the scoring vector ~s

m̂

. As an example, the Borda scoring
function is defined by a left triangular matrix where each
m̂-th row is the vector (m̂� 1, m̂� 2 . . . , 0, . . . , 0) as shown
in Figure 1.

Example 1. Given the linear order V = 3 � 1 � 2 � 4
over the set of alternatives A = {a1, a2, a3, a4}, the Borda
scoring function assigns a score of 2 to alternative a1, de-
noted by score

M

Borda

(V, 1) = 2 which corresponds to the



Figure 1: Matrix view of Borda and Veto scoring

functions.

(4, 2)-th element of the matrix M

Borda

in Figure 1.

In this paper we will consider the following voting rules.

2.1 Scoring run-off voting rules
A scoring run-o↵ voting rule is defined by a scoring func-

tion f , and a priority function g : 2N ! N and proceeds in
m� 1 rounds, where at each round an alternative with the
lowest score by f , ties being broken by g, is eliminated and
the agents’ votes are determined on the remaining alterna-
tives. The remaining alternative is declared as the winner.
In this paper, we are interested in the following well-studied
voting rules: 1. Single Transferable Vote (STV) where the
scoring function is the plurality function, 2. Coomb’s rule
defined by the veto function, and 3. Baldwin’s rule defined
by the Borda function.

Notice that the choice of priority function a↵ects the out-
come of the voting rule. An alternative is a co-winner w.r.t.
a scoring run-o↵ rule if there exists a priority function under
which the alternative is declared the winner. This leads to
the question: Can we determine the set of all possible win-
ning alternatives under a given scoring run-o↵ voting rule?

Definition 1. (PUT-winners) Given a profile P , and
a voting rule r, we are asked to compute the set of all co-
winners.

An alternate view of run-o↵ voting rules is that given a
profile, each voting rule corresponds to an order of eliminat-
ing the alternatives. Indeed, a brute force way to determine
the set of all co-winners is to explore every possible order in
which to eliminate alternatives one after the other.

This suggests two important avenues to pursue:

• Model the PUT-winners problem as a search prob-
lem, where starting at the state with all alternatives,
we expand the frontier by eliminating one alternative
at a time and explore the state space until we reach
a state where all but one alternative remains and the
corresponding alternative is a co-winner. Tracing the
paths to each reachable state gives us the correspond-
ing voting rules.

• Formulate the problem as an ILP where feasible solu-
tions correspond to the elimination of exactly one al-
ternative in each of m�1 rounds. We can test whether
an alternative is a co-winner by testing whether a so-
lution where the alternative is not eliminated in any
round is feasible.

3. MODELING VOTING RULES AS A
SEARCH PROBLEM

We can model the class of scoring run-o↵ voting rules as
a search problem where:

• States: there are |2A|�m states, one for each possible
elimination of 0 to m� 1 alternatives.

– Start state: no alternatives have been eliminated.

• Successor function: maps the current state to the set
of states where an alternative with the lowest score is
eliminated.

• Output: a set of winning alternatives.

Beginning from the start state, we add states to the fron-
tier using the successor function. At each iteration, we
choose a state from the frontier to explore, and remove it
from the frontier. If all but one alternatives have been elim-
inated, add the remaining alternative to the set of winners.
Otherwise, use the successor function to add new states to
the frontier, one for each elimination of an alternative with
the lowest score.

We use depth first search and employ the following tech-
niques to improve the performance, and expand on them
later.

(i) pruning involves removing a state from the frontier if
all the remaining alternatives are known winners,

(ii) reduction, involves eliminating more than one alterna-
tive,

(iii) caching, involves maintaining a set of states that have
been explored, and

(iv) sampling, where we pre-compute a subset of the possi-
ble winners by running the run-o↵ rule using a random
priority function.

Reduction Techniques A key idea in run-o↵ voting rules
is to eliminate the alternative that has the least support
and run the election on the reduced problem with one less
alternative. However, there are conditions under which we
can remove more than one of the remaining alternatives.

For example, San Francisco STV uses the following con-
dition [1].

If the total number of votes of the two or more candidates
credited with the lowest number of votes is less than the num-
ber of votes credited to the candidate with the next highest
number of votes, those candidates with the lowest number
of votes shall be eliminated simultaneously and their votes
transferred to the next-ranked continuing candidate on each
ballot in a single counting operation.

For STV, we introduce the following generalization of the
above reduction technique as follows.

Reduction for STV. In any round, suppose there is an
alternative a whose plurality score is strictly larger than the
total plurality score of all other alternatives with strictly less
plurality scores, then those alternatives can be eliminated.

This condition guarantees that no matter what the elim-
ination order is for the alternatives whose plurality score is
strictly less than that of a, denoted by A, before alterna-
tives in A are eliminated, none of a or A � A [ {a} can be
eliminated.

Reduction for general multi-round rules. For gen-
eral multi-round rules we have a weaker reduction condition.



Given a collection of scoring vectors M = (~s1, . . . ,~sm), and
m

⇤  m and any k  m

⇤ � 2, let Di↵
M

(P,m⇤
, k) denote

the maximum reduction in the score di↵erence between a
pair of alternatives (a, b), before and after k alternatives
have been eliminated in a ranking over m

⇤ alternatives.
Di↵

M

(P,m⇤
, k) can be computed in polynomial time by enu-

merating all positions of a and b and all ways to eliminate k

alternatives (there are no more than k

⇤ ways, each of which
corresponds to the number of eliminated alternatives that
are ranked higher than a and b, between a and b, and after
a and b, respectively).

The condition for general multi-round rule with scoring
vectors M is: in any round, suppose there exists an alterna-
tive a with score s, let s0 denote the next highest score and
let A denote the alternatives whose scores are strictly less
than s. If s�s

0
> n⇥Di↵

M

(P,m⇤
, |A|), then all alternatives

in A can be eliminated.
It is not hard to verify the correctness of the two condi-

tions. The condition for STV is stronger than the generic
condition for computing PUT-STV.

Figure 2: Comparison of runtime with and without

caching on synthetic data for STV.

4. EXPERIMENTAL RESULTS: SEARCH
PROBLEM

Each configuration of our experimental setup involves cre-
ating datasets of elections with m alternatives and n voters.
For each dataset, we conducted experiments to evaluate the
performance of depth first search while varying four parame-
ters corresponding to whether the following techniques were
used to speedup the algorithm: (i) pruning (P) (ii) reduc-
tion (R) (iii) caching (C) (iv) sampling (S) , each of which is
set to 1 when the technique is used and set to 0 otherwise.
Several factors a↵ect the runtime of the search algorithm.
At each iteration, we must add a branch for every alterna-
tive that is tied with the lowest score. It is easy to see how
the number of ties encountered during the running of the al-
gorithm leads to an increase in the size of the search space.
In order to mitigate the e↵ect this may have on our results,
we decided to focus on the harder cases where there are ties.
The profiles in each dataset are marked as (i) easy if there
is a unique winner and every round has a unique alternative
with the lowest score, and (ii) hard if at some round of the
voting rule we encounter more than one alternative tied with
the lowest score. We will focus on results for the STV rule

Table 1: Summary of Preflib datasets.

All profiles Hard profiles
# profiles 315 49
Avg. # alternatives 25.23 77.39
Max. # alternatives 242 242
Avg. # unique orders 28.1 6.37
Max. # unique orders 4926 30
Avg. # co-winners 1.1 1.67
Max. # co-winners 4 4

Table 2: Average number of co-winners for synthetic

datasets

n
m 10 20 30 40 50 60 70 80 90 100
10 2.89 2.04 1.88 1.78 1.72 1.64 1.57 1.58 1.53 1.53
20 4.65 4.64 4.2 3.8 3.27 3.07 2.95 2.8 2.81 2.63
30 5.58 7.24 7.4 6.95 6.51 5.85 5.84 5.33 5.05 5.06

on these hard cases.
Preflib Data In order to test the algorithms on real world

preference data, we identified profiles from Preflib that have
complete preferences. We found 349 profiles with complete
preferences, of which 49 or about 15% correspond to hard
cases (see Table 1). We find that in the real world data,
profiles with ties and multiple co-winners are rare.

Synthetic Data The synthetic datasets were generated
as follows: For each value of m and n, we generated profiles
with n i.i.d. rankings uniformly at random over m alterna-
tives. We then identified 1000 hard profiles to evaluate the
running time and number of nodes explored to discover a
given percentage of the co-winners (see Table 2).

4.1 Effect of Caching, Pruning and Reduction
Caching has the most noticeable impact on the running

time (see Figure 2). Since it is a natural improvement to ap-
ply to any search problem, we leave caching on in all future
experiments. The e↵ect of pruning and applying the reduc-
tion on synthetic data is summarized in Figure 3 for the
STV rule. For every configuration of m 2 {10, 20, 30} alter-
natives and n 2 {10, 20, . . . , 100} voters, we generate 1000
hard profiles and report the average running time. When
we apply pruning, we see a small improvement in the run-
ning time (see Figure 3(a)). However, using reductions (see
Figure 3(b)) increases the average runtime and a closer in-
spection reveals that this was due to time spent in evaluating
whether the reduction can be applied.

Our experimental results for Preflib data are summarized
in Table 3. We found that for STV on real world datasets,
the maximum observed running time was only 0.06 seconds.

4.2 Early Discovery and the Effect of Sam-
pling

Our main results are focused on the more practical prob-
lem of early discovery where under a given constraint on
time or computational resources, we would like to be able to
discover as many of the co-winners as possible. We find that
the AI search algorithms do have an early discovery prop-
erty. A large percentage of the co-winners are found early
in the exploration. For m = 20, we find that close to 80% of
the co-winners are discovered after exploring just 200 states
and for m = 30, close to half of all the co-winners are dis-



Figure 3: The e↵ect of pruning (a) and applying the reduction (b) on the running time of the search algorithm

on synthetic data for STV.

Table 3: Running time on Preflib data for STV.

Running time (10�4s) All profiles Hard profiles
average 3.35 1.42
minimum 0.39 0.52
maximum 648.93 4.65

covered after exploring only 100 states. Somewhat unsur-
prisingly even a relatively unsophisticated search strategy
without any improvements to reduce the search space other
than caching performs significantly better than attempting
to discover co-winners by breaking ties at random.

For comparison, we include the running time of the search
algorithms for Coomb’s rule and Baldwin’s rule in Figure 5.
Intuitively, we expect to see a lot more ties when computing
co-winners for Coomb’s rule and fewer ties for Baldwin’s rule
and we can observe its e↵ect on the running times which are
larger than STV in general for Coomb’s rule and significantly
lower for Baldwin’s rule.

4.3 AI Search for Single Peaked Profiles
We generated profiles with i.i.d. single-peaked preferences

by following the algorithm developed in [15]. For each con-
figuration of m alternatives and n candidates, we identified
500 hard profiles from a set of randomly generated profiles.
Most of the profiles have either a unique winner or only few

Table 4: Average number of ties when running the

search algorithm to compute all STV co-winners.

Preferences m = 10 m = 20 m = 30
Random preferences 4.7255 76.574 1324.301

Single-peaked preferences 1.9354 3.7466 6.4802

co-winners (Figure 6(a)) and the median candidate (who is
the Condorcet winner) is most frequently the co-winner of
the election under the STV rule (Figure 6(b)).

We find that for a given number of candidates, the av-
erage running time of the search algorithm to compute all
co-winners for single peaked profiles is significantly faster
than the average time for profiles with random preferences
(Figure 7) and only grows linearly with the size of the pro-
file. For example, with m = 30 alternatives and profiles
with 100 voters, the running time of the algorithm to com-
pute all co-winners is under 0.003 seconds on average when
preferences are single peaked which is 2 orders of magni-
tude lower than the average runtime for random preferences
which is close to 0.2 seconds. Indeed, while the running time
only increased almost linearly with the number of voters for
single-peaked preferences, we observe a near exponential in-
crease in running time with the number of candidates in the
election when profiles have random preferences. This is not
surprising when we consider the number of ties encountered



Figure 4: Early discovery of co-winners on synthetic data for STV.

(a) Coomb’s rule.

(b) Baldwin’s rule.

Figure 5: Running time of the search algorithm on synthetic data with and without pruning for the Coomb’s

and Baldwin’s rules.

on average by the search algorithm as shown in Table 4.

5. ILP FORMULATION
We model the PUT-winners problem as an ILP where

the solutions correspond to the elimination of a single alter-
native in each of m� 1 rounds and we test whether a given
alternative is the co-winner by checking if there is a feasible
solution when we enforce the constraint that the given al-
ternative is not eliminated in any of the rounds. We present
ILP formulations of the STV and Baldwin’s voting rules be-
low. The ILP for Coomb’s rule is similar to the ILP for STV
where the scoring rule is changed from plurality to veto. For
each alternative a

i

2 A, and for each round t  m � 1, we

define the variable x

t

i

2 {0, 1} to model the elimination of
a

i

at round t.

Table 5: ILP for STV rule.

m n Profiles ILP
alternatives

Uncertain
alternatives

Runtime(s)

10 10 392 6.51 3.52 13.026
10 20 104 8.71 6.91 961.64
10 30 88 9.10 7.49 1799.82
20 10 224 7.93 3.34 177.31
20 20 4 12.25 12 4438.66



(a) Distribution of the # winners.

(b) Frequency of alternative being the winner.

Figure 6: Single-peaked profiles generated i.i.d.

Table 6: ILP for Coomb’s Rule.

m n # profiles % Uncertain
candidates

Runtime (s)

10 10 10 83% 2289.39
10 20 5 92% 2503.07

5.1 STV and Coomb’s rule

• For alternative a

i

and rounds t  m, there is a binary
variable x

t

i

that represents the elimination order. xt

i

=
1 if and only if a

i

is eliminated in t-th round.

• For each i  m, 1  t  m � 1 and j  n, there is
a binary variable p

t

i,j

that represents alternative a

i

’s
plurality score in vote V

j

in round t.

The constraints are

• The usual constraints for xt

i

to be a full ranking.

• The constraint for pt
i,j

of alternative a

i

at the top po-

sition: p1
ij

= 1 and
P

t�1
t

0=1 x
t

0
i

+ p

t

ij

= 1

• The constraint for p

t

i,j

for alternatives from the sec-

ond position: Let Kt

i

=

P
i

0�
j

i

P
t

t

0=1
x

t

0
i

0

|{i0�
j

i}| , then the con-

straint is,

K

t

i

� m� 1
m

 p

t

i,j

 K

t

i

.

• For each t, let Plu

t

i

=
P

j

p

t

i,j

. Then for all di↵erent

i, i

0, we have

(1 +
X

t

0t

x

t

0
i

0 � x

t

i

)⇥M + Plu

t

i

0 � Plu

t

i

We determine the set of all co-winners as follows: Pick an
alternative a

i

. Add constraints 8t  m � 1, xt

i

= 0. If ILP
is feasible, a

i

is a co-winner.

5.2 Baldwin’s rule
The variables are: for all i, t  m, there is a binary vari-

able x

t

i

that represents the elimination order. x

t

i

= 1 if and
only if a

i

is eliminated in t-th round.
The constraints are

• The usual constraints for xt

i

to be a full ranking.

• For each t, let Plu

t

i

=
P

j

(1 + |{i0 � i}| �
P

i

0�i

P
t�1
t

0=1 x
t

0
i

0 ). Then for all di↵erent i, i0, we have

(1 +
X

t

0t

x

t

0
i

0 � x

t

i

)⇥M + Plu

t

i

0 � Plu

t

i

The set of co-winners is computed as follows: Pick an
alternative a

i

. Add constraints 8t  m � 1, xt

i

= 0. If ILP
is feasible, a

i

is a co-winner.

5.3 Comparison of ILP to AI Search
Tables 5, 6 and Figure 8 summarize the experimental re-

sults from running the ILPs to solve PUT-winners w.r.t.
STV, Coomb’s rule and Baldwin’s rule respectively. The re-
sults were obtained using Matlab’s ILP solver. It is clear
that the ILP solver takes far longer to solve PUT-winners

than even the default formulation of AI search without ap-
plying any of our speed up techniques. Another major prob-
lem we encountered was that the Matlab’s ILP solver fre-
quently terminates without being able to determine if the
problem is feasible. A simple comparison with the results in
Figure 3 reveals that the running times of standard search
algorithms from AI are orders of magnitude lower than the
running times of the ILP solvers.

6. SUMMARY AND FUTURE WORK
We have made the first steps of designing practical al-

gorithms for computing all winners under STV and other
multi-stage rules. We have shown that standard search al-
gorithms are much faster and more reliable than ILP. By
running experiments on synthetic dataset, we observe that
cache is the most e↵ective feature for improving running
time. The algorithms run much faster on i.i.d. generated
single-peaked preferences and the winners are around the
median. For Preflib data, about 15% profiles we tested need
tie-breaking under STV.

There are many more strategies we plan to explore. Sup-
pose we use priority queue to store and sort the nodes to
be explored, what is a good priority function to encourage
early discovery of new winners? We tried multiple prior-
ity functions, such as various weighted combinations of the



Figure 7: Running time of AI search algorithms on single-peaked preferences.

Figure 8: Average runtime of the ILP for Baldwin’s

rule on elections with 10 candidates as we vary the

number of voters.

depth of the node, the new winners in the set, and other
features. Unfortunately none of them is significantly bet-
ter than the standard search algorithm. The next step is
to use machine learning to learn a good priority function.
A related approach is to use heuristics along with a search
algorithm such as A⇤ search. We are interested in designing
good heuristics to inform the search algorithms.

A major challenge in practice, is the limited cache size.
When m = 60 our machine sometimes run out of memory.
Even if the size of memory is not an issue, the time for check-
ing whether a node has been visited will become significant
when m becomes large. How to design a good search algo-
rithm with limited memory is an interesting and important
open question. In addition to multi-round rules, we also plan
to extend our techniques to compute PUT-ranked-pairs. We
will integrate our algorithms for STV and other multi-stage
rules to OPRA for everyday group decision-making tasks.
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